A’ Plus Rehnuma Series

. A o A T

Tick (v) the correct answer.

1. Which of the following best defines computational thinking?

a) A method of solving problems using mathematical calculations only.

b) A problem-solving approach that employs systematic, algorithmic, 3.
logical thinking.

¢) Atechniqueused exclusively in computer programming.

d) An approach that ignores real-world applications.

2. Why is problem decomposition important in computational

thinking? |
a) It simplifies problems by breaking them down into smaller, more manageat

parts. :
b) It complicates problems by adding more details.
¢) It eliminates the need for solving the problem.
da) It is only useful for simple.problems.
3 Pattern recognition involves:
a) Finding and using similarities within problems
b) Ignoring repetitive elements '
¢) Breaking problems-into smaller pieces .
d) Writing detailed algorithms _
4. Which term refers to the process of ignoring the details to focus on
the main idea? ' '
a) Decomposition b) Pattern recognition
¢) Abstraction d) Algorithm design
5. Which of the following is a principle of computational thinking?
a) Ignoring problem understanding b) Problem simplification
¢) Avoiding solution design d) Implementing random solutions
6. Algorithms are:
a) Lists of data
b) Graphical representations :
€) Step-by-step instructions for solving a problem
d) Repetitive patterns

o m——

L

g B W o R e
;-"‘ LIUR FERAUATY SETI 6% } 155
7 Which of the following is the first step in problem-sol\;ing
according to computational thinking?
a) Writing the solution b) Understanding the problem
¢) Designing a flowchart d) Selecting a solution
. Flowcharts are used to:
) Code a program b) Represent algorithms graphically
¢) Solve mathematical equations d) Identify patterns
) Pseudocode is:
3) A type of flowchart
h) A high-level description of an algorithm using plain language
¢) A programming language d) A debugging tool
10. Dry running a flowchart involves:
a) Writing the code in a programming language
b) Testing the flowchart with sample data
¢) Converting the flowchart into pseudocode

d) Ignoring the flowchart details
1 2 3 4 5 6 7 8 10
b a a c b C b b b

1. Define computational thinking.

Ans: Computational Thinking (CT) is a problem-solving process that involves a
set of skills and techniques to solve complex problems in a way that can be
executed by a computer. This.approach can be used in various fields such as
computer science, biology, mathematics, and even daily life.

2. What is decomposition.in computational thinking?

Ans: Decomposition«is.the method of breaking down a complicated problem
into smaller, more convenient and manageable components. Let's take the
example of building.a birdhouse. This task might look tough at first, but if

we break it down, we can handle each part one at a time.

3. Explainpattern recognition with an example.

Ans: Pattern recagnition involves looking for similarities or patterns among and

;wthm problems. For example, if you notice that you always forget your

'Omework «on Mondays, you might recognize a pattern and set a reminder

*pecifically for Sundays.

Y. DeDf?SSr!be abstraction and its importanc.e'in problem-solving.

c4posing glt'lonr: Abstraction is the process of hiding the complex details while

2us o thn){]t ; necessary parts. It helps reduce complexity by allowing us to

""Poﬂanci :O?b -level overview without getting lost in the details, |

“SDecially i straction is a fundamental concept in problem solving,
omputer science. This helps in understanding, designing, and

Ol
: \"G Problems more efficiently.
\\ - p— — - -

or §
> - 1
- !
. o

5

A . -
2. \
4 .
; T g g o e -; § 1
4 N v N TN LY b lsb
i 3oa
«
" e e e st P A A g e -

Example: Naokng a Cup of Tea - High-level Steps: 1, Boil water, 2. Add te;
eaves or a tea bag 3 Steep for a few minutes. 4. Pour into a cup and adg
wik/sugar it desired
5 What is an algorithm?
Ans: An 2igonthm is a step-by-step collection of instructions to solve a problem,
or complete a task
Example: We imagine a recipe for baking a cake. The recipe provides a list of
ngredients and step-by-step nstructions to mix them and bake the-cake. This
s an example of an algonthm because it outlines a clear sequence-of steps tg
achieve the goal of baking a cake
6. How does problem understanding help in computational thinking?
Ans: Understanding a problem involves identifying the core issue, defining the
requirements, and setting the objectives, It is the first and most important step
in probiem-solving, especially in computational thinkingWhat are flowcharts
and how are they used?
Ans: Flowcharts are visual representations of,.the steps in a process using
jifferent symbols connected by arrows. They are widely used in various fields,
nciuding computer science, engineering, and-business, to design systems, and
communicate complex workflows clearly'and-effectively. It helps programmers
=nd students focus on the logic of the.algorithm without worrying about the
syntax of & specific programming danguage. :
7. Explain the purpose of pseudocode.
Ans: Pseudocode is 2 method of representing an algorithm using simple and
informai fanguage that is easy-to understand. It combines the structure of
srogramming clarity with the readability of plain English, making it a useful tool
for planning and explaining algorithms.
8. How do you differentiate between flowcharts and pseudocode?
Ans:

Pseudocode - Flowcharts

- Pseudocode uses plain language | - Flowcharts use graphical symbols
- and structured format to describe | and arrows to represent the flow of

the steps of an algorithm. an algorithm.
- Itiis read like a story, with each | - It is like watching a movie, where |
- step is written out sequentially. each symbol (such as rectangles, |

- Pseudocode communicates the | diamonds, and ovals) represents a l
i steps in a detailed, narrative -like | different type of action or decision,
 format. and arrows indicate the direction
- It is particularty useful for | of the flow.

{documenting algorithms and can | - They are useful for identifying the.
- - 1be converted into actual code in | steps and decisions in an;

{ @0y programming language. algorithm at a glance.

B

1_,/ Cornpull ¥ (9”"

9. What s a dry run and why is it importan®? o
Ans: A dry run involves manually going through the algorithim with sarnple data
1o identify any errors. A dry run of a flowchart involves manuaily waiking
through the flowchart step-by-step to understand how the algorithm works
without using a computer. This helps identify any logical errgrs and understanc
the flow of control.

10. Describe LARP and its significance in learning algorithms.

Ans: LARP stands for Logic of Algorithms for resolution of Problems. Itis.a fun
and interactive way to learn how algorithms work by actually runaing them and
seeing the results.

Significance:

LARP helps you to:

sUnderstand how algorithms work

v See the effect of different inputs on the output

« Practice writing and improving your own algorithras,

11, List and explain two debugging techniques.

Ans: Debugging is the process of finding and fixing errors in an algorithm or
ﬂowchart Here are some comman debuggingtechnigues:

v Trace the Steps: Go through each‘stepiof your algorithm or flowchart to see
identity where it goes wrong.

» Use Comments: Write comments.ar notes in your algorithm to explain what
each part is supposed to do. This.can help you spot mistakes,

1 Wme an algorithi te.assign a grade based on the marks obtained by a
student The grading system follows these critera:
90 and‘above: A+
80 to 89. A
70t0'79: B
60 t0 69: C
Below 60: F
. Steps:
1. Input marks obtained by the student
2 If marks are greater than or equal to 90, assign grade "A+"
3. Else if marks are greater than or equal to 80, assign grade "A"
4 Else if marks are greater than or equal to 70, assign grade "B"
$ Else if marks are greater than equal to 60 assign grade "¢
£ tlse, assign grade "
& | Output Display requ:red grade

e
- -
.' PRI o e i i TP IR ——— I SRS
) ———— —
Y

. e @ e -
=
@

-
Y

4 TR -
Wy o :

AN 57 TN 3 2 3
IR AR v .

TS
FIET

sy

A* Pt Rehnuma Serics

158

2. Explain how you would use algorithm design methods, such “;,‘
flowcharts and pseudocode, to solve a complex computational problem
lllustrate your explanation with a detailed example.

Ans: Algorithm design methods provide a range of tools and techniques such
as flowcharts and pseudocode to tackle various computational problems
effectively. Each method has its strengths and weaknesses, making it suitable
for different types of problems. Understanding these methods allows one to
choose the most appropriate approach for a given problem, leading to more
efficient and smart solutions,

Following flowchart will read a number from user. This numberis checked
using % operator to find whether it is odd or even.

If
Number) = =0 |
Yes - No
Display Duplay
“Even Number" “0dd Number”
[

@ .

Steps for the Flowchart

o Start: Begin the process.

o Input the Number: Accept a number from the user.

° Check Condition: Use the modulus operator to determine if the

number is.divisible by 2:
If the number % 2 equals 0, it is even.
Otherwise, it is odd.
Decision Box:
If the condition (number % 2 == Q) is true, go to the "Even" path.
If the condition is false, go to the "Odd" path.
Output Result; Display "Even” or "Odd" based on the path taken.
End: Terminate the process
elow is the pseudocode for this process, followed by an explanation.
Algorithm: Pseudocode for determining if a number is even or odd.
1; Procedure CheckEvenOdd(number)

W e @« O O ® OO

Al Pius Reh" ™a Secies

o ——.

— e S Rp— ¥

2 Input: number {The number to be checked} {37

-Output "Even” if number is even, "Odd" if number is odd

8egin

if (number % 2 == 0) then

print "Even”

else

print "QOdd"

- End if

0 End

Sm&l’_ﬁiﬂl.dmgi

' Procedure Declaration: The pseudocode begins with the'declaration of the

orocedure ‘CheckEvenOdd' which takes a single input,/number’,

2. Input: The procedure accepts a variable 'number‘which is the integer to be
checked.

3. Output: The procedure outputs "Even” if the number is even, and "Odd" if
the number is odd. 3

4 Begin: Mark the start of the procedure,

LIRS RN AU S

r O

3. Condition Check: The condition 'if (number % 2 == 0)' checks if the remainder
=¢ the number when divided by 2.is zero..The modulo operator ‘%' is used for
this purpose,

_Even Case: If the condition is-true, the procedure prints "Even".
Odd Case: If the condition isfalse, the procedure prints "Odd".

_End: Marks the end of the procedure
3. Define computational thinking and explain its signiﬂcance in modern

problem-solving.” Provide examples to illustrate how computational

thinking can be applied in different fields.

Ans: Definition: Computational Thinking (CT) is a problem-solving process
1nat involves a set of skills and techniques to solve complex problems in a way
*hat can be executed by a computer. This approach can be used in various fields
~ 3uch 2s computer science, blology, mathematics, and even daily life.

&gniﬂcance
Computational thinking involves several key principles that guide the process

- <f problem-solving in a structured manner.

- 1. Problem Understanding: Understanding a problem involves identifying
‘ne core issue, defining the requirements, and setting the objectives.
- ~nderstanding the problem is the first and most important step in problem-
- solving, especially in computational thinking. This involves thoroughly
. 2nalyzing the problem to identify its key components and requirements before

- 3ttempting to find a solution.

(8]

“J

x»

L

160 Lo

Ploblcm Sll'npllﬂcatlon ‘}tmphfqu a prohlmn involves br(u)kmq W dows
mto smaller, more manageable sub-prablems
Example: To design a website, break down the tasks into designing the layr_)m
creating content, and coding the functionality.
3 Solution Selection and Design: Choosing the best solution invoivay,
evaluating different approaches and selecting the most efficient one. Designir.
the solution requires creating a detailed plan or algorithm.
Examples of Computational Thinking in Rifferent Fields
1. Healthcare
Application: Disease Diagnosis
Using CT, medical data can be analyzed to identify patterisin symptoms ana
predict diseases. For instance, CT Is applied in designing Al.algorithms for
imaging analysis in radiology, detecting anomalies like turnors.
Significance: Enhances accuracy and efficiency infnedical diagnoses.
2. Education
Application: Personalized Learning Systems
By analyzing student performance data,CT helps design adaptive learning
platforms that tailor educational content to individual needs,
Significance: Improves learning outcames threugh data-driven insights
3. Business
Application: Fraud Detection
CT alds in developing algorithms to recognize unusual transaction patterns,
flagging potential fraud in financial systems,
Significance: Reduces financial losses and enhances security,
4. Discuss the concept of decomposition in computational thinking. Why
Is It Important?
Ans: Decomposition is the method of breaking down a complicated problem
into smaller, more convenient components, Decomposition is an important
step in computational thinking. It involves dividing a complex problem into
smaller, manageable tasks. Let's take the example of bullding a birdhouse, This
task might look tough at first, but if we break it down, we can handle each part
one at a time, Here's how we can decompose the task of building a birdhouse.
* Design the Birdhouse: Decide on the size, shape, and design. Sketch a plan
and gather all necessary measurements,
« Gather Materlals: List all the materials needed such as wood, nails, paint, and
tools ke a hammer and saw.
» Cut the Wood: Measure and cut the wood into the required pieces according
to the design, + Assemble the Pieces: Follow the plan to assemble the pieces
of wood together to form the structure of the birdhouse.

sy . ——

1ol

+ Paint and Decorate: Paint the birdhouse and add any decorations to make it
attractive for birds.,

+ install the Birdhouse: Find a suitable location and securely install the
Oirdhouse where birds can easily access it.

5. Explain pattern recognition in the context of computational thinking.
How does identifying patterns help in problem-solving?

Ans: Pattern recognition involves looking for similarities or patterns ameng and
within problems. For instance, if you notice that you always forget your
- homework on Mondays, you might recognize a pattern and set a reminder
specifically for Sundays. Pattern recognition is an essential. aspect of

- computational thinking. It involves identifying and understanding, regularities
. Or patterns within a set of data or problems. Let's consider the example of
recognizing patterns in the areas of squares. The upper row represents the side
- lengths of squares, ranging from 1 to 7. The lower row.shows the corresponding
areas of these squares. Here, we can observe a pattern in how the areas
increase. ;
» Side Length 1: Area = 1% = 1
» Side Length 2: Area = 2= 4 (1 + 3)
« Side Length 3: Area =32 =9(1+3+5)
» Side Length 4: Area =42 =16 (1 + 3¢ 5.+ 7)
» Side Length 5; Area = 52 = 25(1T+ 3+ 5+ 7 +9)
- «» Side Length 6: Area = 6% =36 (T'+ 3+ 5+ 7 + 9 + 11)

~«Side Length 7: Area = 7 =49(1 +3+5+ 7+ 9+ 11+ 13)
We can see that the area of each square can be calculated by adding
consecutive odd numbers. For example, the area of a square with a side length
of 3 can be found by adding the first three odd numbers:'1 + 3 + 5=9,

6. What is an abstraction in computational thinking? Discuss its
importance and provide examples of how abstraction can be used to
- simplify complex problems. |
- Ans: Abstraction:
+ Definition: Abstraction is the process of hiding the complex details while
- exposing only the necessary parts.
-+ Importance: Abstraction is a fundamental concept in problem solving,
- especially in computer science. It involves simplifying complex problems by

. . breaking them down into smaller, more manageable parts, and focusing only

: on the essential details while ignoring the unnecessary ones. This helps in
- understanding, designing, and solving problems more efficiently. It hel~*
- reduce complexity by allowing us to focus on the high-level overview without
getting lost in the details.

+ Example:

. Making a Cup of Tea - High-level Steps:

1. Boil water. :

Computer (9'7)

———

162

2. Add tea Ieaves or a tea bag

3. Steep for a few minutes.

4. Pour into a cup and add milk/sugar if desired.

7. Describe what an algorithm is and explain its role in computational

thinking. Provide a detailed example of an algorithm for solving a specific
problem, and draw the corresponding flowchart.

Ans: An algorithm is a step-by-step collection of instructions to solve a problem
or complete a task similar to following a recipe to bake a cake.. An algorithm is
a precise sequence of instructions that can be followed to achieve a specific
goal, like a recipe or a set of directions that tells you exactly what to do and in
what order. ,

Role of Algorithms in Computational Thinking

» Using algorithm, a complex problem is broken into smaller and
manageable steps. A

0 It enables machines to perform tasks without human involvement.
o It creates clear instructions for solving problems.

2 It helps in finding efficient solutions.

Algorithm to find whether a number is even or odd:

Step 1: Start

Step 2: Read a number to N

Step 3: Divide the number by 2 and store the remainder in R.
Step 4: If R = O Then go to Step 6 '

Step S: Print “N is odd” go to step 7

Step 6: Print "N is even”

Step 7: Stop

Flowchart:

J— k.
£ ™ M’ L J y
- ehnuma Series 163 Computer (9'")

8. Compare and contrast flowcharts and pseudocode as methods for
plgorithm design. Discuss the advantages and disadvantages of each
method, and provide examples where one might be preferred over the
other.
Ans:
Flowcharts are visual representations of the steps in a process using different
symbols connected by arrows. They are widely used in various fields, including
computer science, engineering, and business, to design systems, and
communicate complex workflows clearly and effectively. Pseudocode is a
- method of representing an algorithm using simple and informal language that
- | s easy to understand. It combines the structure of programming clarity with
the readability of plain English, making it a useful tool for planning and
explaining algorithms,

Pseudocode . Flowcharts
. Pseudocode uses plain language | - Flowcharts use graphical symbols
and structured format to describe | and arrows to represent the flow of

the steps of an algorithm. an algorithm.
-Itis read like a story, with each step | - It is like watching a movie, where
is written out sequentially. each symbol (such as rectangles,

. Pseudocode communicates the | diamonds, and ovals) represents a
steps in a detailed, narrative -like | different type of action or decision,

format. and arrows indicate the direction of
It is particularly useful for | the flow.
documenting algorithms and can | - Flowchart communicates the
be converted into actual code in | process in a visual format by which
any programming language. we can understand the overall flow
easily.

- They are useful for identifying the
steps and decisions in an algorithm
at a glance.

Howcharts

Advantages:

* Easy to draw.

. Easy to understand problem solving.

¢ Easy to identify errors.

* Easy to observe flow from one step to the other.
~ Disadvantages:

* More time is required to draw a flowchart.

. Modifying a flowchart is not very easy every time.

e ——

o —

& N\u hhn'\lmﬁ Serey IM i 8

e Tv—

‘ it is “t cuitable for very |.1rqe problerm
Pseudocode

Advantages

. Easy to translate into actual programming
Q0de

. Can describe complex algorithms
compactiy

. : Qu‘rck to write and modify, making it ideal
for iterative design.

Disadvantages.

: Not as intuitive for non-technical
aydiences.

. If not standardized, can be interpreted
differently by readers.

* Requires familiarity with logical constructs
and syntax.

The “better" choice :

Flowcharts are better for non-technical or visual
learners, while pseudocode is better for (St
developers and technical teams. In practice, o
both tools can complement each other. For
instance, you might use a flowchart to explain
the overall logic and pseudocode to define
detailed steps.

9. Explain the concept of a dry run in the
context of both flowcharts and pseudocode.
How does performing a dry run help in
validating the correctness of an algorithm?
Ans: Dry Run of a Flowchart:

. A dry run of a flowchart involves manually go
through the flowchart step-by-step :
understand how the algorithm works wnthout usmg a computer This helps to

identify any logical errors and understand the flow of control.
Example: Calculating the Sum of Two Numbers

Consider the flowchart for adding two numbers

S«ps to dry run this flowchart:

_Inputi, N2

e -

1. Start

2. Input the first number (e.g., 3)

3. Input the second number (e.g., 5)
4. Add the two numbers (3 + 5 = 8)
5. Qutput the result (8)

6. Stop

Dry Run of Pseudocode

A dry run of pseudocode involves manually simulating the execution of the
pseudocode line-by-line. This helps in verifying the logic and correctness of the
algorithm.
Example: Finding the Maximum of Two Numbers
- Consider the pseudocode for finding the maximum of two numbers:
~ Algorithm: FindMax |

1. Input: num1, num2
~ 2.if num1 > num2 then
3. max = num1
4. else
5. max = num2
 6.end if
7. Qutput: max
Steps to dry run this pseudocode:
1. Input num1 and num?2 (e:g., 10 and 15)
2. Check if num1 > num2 (10> 15: False)
3. Since the condition is False, max = num2 (max = 15)
4, Qutput max (15)
Conclusion:
Performing a dry run helps in validating the correctness of an algorithm in
following ways:
Dry running your code or algorithm helps catching errors early in the
development process, saving time and effort. |
» Many professional programmers and computer scientists use dry running as.
a debugging technique to ensure their algorithms work correctly
*A dry run helps validate the correctness of algorithms designed as flowcharts
or pseudocode by ensuring the logic and execution paths produce .the
expected results. It is a critical step in debugging and refining algorithms before
implementation. |
10. What is LARP? Discuss its importance in learning and practicing
algorithms. .
Ans: LARP stands for Logic of Algorithms for resolution of Problems. It is a fun
and interactive way to learn how algorithms work by actually running them and

165

seeing the results. Think of it as a playground where you can experiment wis.
different algorithms and understand how they process data.
Importance of LARP in Learning and Practicing Algorithms
LARP helps you:
- Understand how algorithms work.
- Observe the effect of different inputs on the output

- Practice writing and improving your own algorithms,
» Clear representations (like pseudocode and flowcharts) make it easier t,
identify and fix errors.
« Encourages a systematic approach, reducing errors,
- Breaks down the process into manageable steps.
11. How does LARP enhance the understanding and application of
computational thinking principles? Provide a scenario where LARP (Logic
of Algorithms for resolution of Problems) can be used to improve an
algorithm.
Ans: LARP can be used to enhance the understanding and application of
computational thinking principles by providing an interactive learning
experience.
Computational Thinking Principles
1. Decomposition: Breaking down complex problems into smaller,
manageable parts.
2. Pattern Recognition: Identifying patterns and relationships within data.
3. Abstraction: Focusing on essential features while ignoring non-essential

details.
4. Algorithmic Thinking: Developing step-by-step instructions to solve a

problem.
Suppose we have a simple program that checks whether a given number is even

or odd:

Initial Algorithm

o Use the modulus operator (%) to determine if the number is divisible
by 2: |

oy If num% 2 == 0,

. The number is even.

o Otherwise, it is odd.

Pseudocode:

Input: num

If (num % 2) == 0;
Qutput "Even”
Else:

Qutput "Odd"

A. P'ﬁs Rehnum 1 Series 167 ‘

{ leitations N
1. Inefficient use of modulus operator: The modulus operator (%) can be
_ expensive in terms of computation.

2. Lack of input validation: The program does not check if the input is a valid
- ipteger.

Applying LARP

To improve the algorithm, we can apply LARP:

. 1. Decomposition: Break down the problem into smaller sub-problems:

. Checking if a number is even or odd
e Validating user input
~ 2 Pattern Recognition: Identify patterns in the data:
0 Even numbers always have a 0, 2, 4, 6, or 8 in the ones place

3. Abstraction: Focus on essential features:

¢ Checking the last digit of the number

4. Algorithmic Thinking: Develop a new algorithm that includes the
perceptions gained from decomposition, pattern recognition, and abstraction:

o Use bitwise operations to check if the last digit is even or odd
Improved Algorithm:
o Input the number.

. Use the bitwise AND operation to check the LSB.
< Output “Even" if the result is 0 and "Odd" otherwise.

Pseudocode:
o Input: num
. If (num & 1) ==
o Output "Even”
0 Else:
. Output "Odd"
- NOTE:

Time Complexity for both the modulus and bitwise approaches, but the
bitwise method is more efficient in terms of processing speed.

Additional Multiple Choice Questions (MCQs)
1. What is computational thinking primarily used for?

a) Writing novels b) Solving complex problems
c) Drawing diagrams d) Playing video games
2. Which of the following is NOT a component of computational
thinking?
~ 3) Decomposition b) Pattern recognition
¢) Debugging d) Abstraction

[

¢ “Computer (0"‘)

168

3. what does decomposition involve?
1! Breaking problems into smaller tasks
=t Combining tasks into one big problem

o ignoning complex problems d) Analyzing algonthms
& 1n pattem recognition, which of the following is identified?

2) Complex algorithms b) High-level abstractions

o Simmlanities or patterns d) Errors in code

5. What does abstraction focus on?

a! inciuding all details b) Hiding unnecessary details

“ombining multiple algorithms d) Recognizing errors

~ N~

6. Which of the following is an example of an algorithm?

a) Wit “g a novel b) Painting a picture

o) Recipe of Baking a cake d) Observing patterns in data
7. What is the first step in planting a tree algorithm?

a) Digging a hole b) Choosing a suitable spot
o) Watenng the tree d) Adding mulch

8. What is the first step in computational thinking?

2! Problem simplification b) Solution design

¢) Understanding problem d) Writing algorithms

9. Which of the following is NOT a benefit of problem understanding?
a) Gaining clarity and focus b) Defining goals

¢) Avoiding mistakes d) Skipping problem analysis

10. In the example of building a school website, which aspect is NOT part
of understanding the problem?

a) Identifying user needs b) Coding immediately

¢) Determining technical constraints d) Listing the required features

11. What is the purpose of solution design? -

a) To test multiple solutions b) To create a detailed plan or algorithm
¢) To skip understanding the problem d) To directly implement the solution
12. What is a key factor in building an effective school website?

a) Coding immediately b) Ignoring user needs

¢} Understanding requirements d) Only focusing on visuals

13. Which symbol in a flowchart represents a decision point?

a) Oval b) Rectangle

¢) Parallelogram d) Diamond

14. What does a parallelogram symbolize in a flowchart?
a) Start of a process b) End of a process

¢) input/output d) A decision point

T ————
e et i it i

169

i{{" .
Lt) £ vy
ﬁl\l-; S ‘

-

15. What is NOT an advantage of using pseudocode?

' a) It helps plan the algorithm.

b) It provides a universal way to convey steps.

o) Itis directly executable by a computer.

d) It ensures algorithm logic i1s sound.

16. Who popularized flowcharts in the early days of computing?

a) Alan Turing b) John von Neumann and Herman Goldstine
<) Grace Hopper d) Charles Babbage

17. In a flowchart, which symbol is used to represent a process?

a' Oval b) Rectangle ¢) Diamond d) Arrow

18. What is the condition to check if a number is even in pseudocode?
3) if (number % 3 == 0) b) if (number /2 == 0)

¢) if (number % 2 == 0) d) if (number * 2 == 0)

19. What does time complexity measure in an algorithm?

a) Space usage b) Running time

¢) Input size d) Output size

20. Which notation is commonly used to express time complexity?

a) Big b) Big © c) Big O d) Big A

21. What does time complexity measure?

a) Amount of memory b) Correctness of an algorithm

¢) Change in running time with input size
d} The number of errors in an algorithm
22. Which notation is used to express time complexity?

a) P-notation b) Big-O notation

¢) Alpha notation . d) Sigma notation
23. What does O(n?) time complexity indicate?

z) Constant time b) Linear time

¢) Quadratic time d) Logarithmic time

24, If an algorithm's time complexity is O(logn), what type of growth
does it have?

2) Exponential - b) Logarithmic ¢) Linear -d) Quadratic

25. Why is space complexity important in algorithm design?

z) To minimize the running time A

o) To optimize the use of memory resources

£} To increase algorithm complexity

2} To improve input accuracy

26. Which of the following represents the fastest time complexity?
A) O(n?) b) O(logn) ¢) O(n) d) O(1)

¢1. What is the primary focus when evaluating an algorithm?

sl The programming language used b) The syntax of the algorithm
¢ The time and space complexity d) The number of inputs

e ———

B b HerROME Serles ™ 170 . 55T

e e e {

_ — mplexity?

- i following represents space co | .
»8. Which of the fo g rep Total memory used by an algorithm

) eyt b}
3} Time taken to process an input . .
2\ Number of operations in an algorithm d) Number of input variables

29. What is the purpose of a dry run?

2) To execute the algorithm
b) To manually test an algorithm sample data

o) To create pseudocode for the algorithm

d) To optimize the code for performance : :
30. Which of the following is NOT a benefit of simulation?

a) Cost-effective b) Unsafe for real-world application
¢) Repeatable for multiple tests d) Allows testing of dangerous situations

31. What is an example of simulation?

a) Writing pseudocode for an algorithm

b) Walking through a flowchart manually |
¢) Using a computer model for traffic flow analysis

d) Debugging errors in code
32. In the flowchart example for adding two numbers, what is the last

e
et e i e S B —

step?

a) Input the first number b) Display the sum
¢) Input the second number d) Stop

33. What is LARP used for? ,

a) To design algorithms b) To test algorithms

¢) To learn how algorithms work d) To debug algorithms
34. Which of the following is a type of error in algorithms?

a) Syntax Error b) Runtime Error

¢) Logical Error d) All of the above
35. What is the purpose of debugging?

a) To design algorithms b) To test algorithms

¢) To find and fix errors in algorithms d) To learn how algorithms work
36. What does the LARP methodology focus on?

a) Writing complex programs b) Visualizing algorithms and their steps
¢) Debugging code errors d) Optimizing time complexity

37. What symbol is used in a flowchart to represent decision-making?
a) Rectangle b) Diamond c¢) Circle d) Parallelogram
38. What command is used in LARP to display messages?

a) PRINT b) WRITE ¢) OUTPUT d) DISPLAY

39. Which of the following is NOT a type of error in algorithms?

a) Syntax Error b) Logical Error ¢) Debugging Error d) Runtime Errof
40, What is a common debugging technique?

a) <<2.3m nosn._mx algorithms b) Ignoring error messages
¢) Tracing steps in the algorithm) Removing conditions from the code

i

-
-I-l

41. What type of error occurs when a vanable is usod without bemg k

defined?’

a) Syntax Error b) Logical Error

¢) Runtime Error d) Missing Step Error

42. What is the role of IF...THEN...ELSE in LARP?

a) To handle input values b) To provide decision-making

<) To end the algorithm
d) To repeat steps in the algorithm
43. Which debugging technique involves breaking down a problem into

smaller parts?

a) Simplify the Problem b) Check Conditions

¢) Use Comments | d) Trace the Steps

44. What happens if a division by zero is attempted in an algorithm?
a) Logical Error b) Runtime Error

¢) SEntax Error d) Missing Step Error

B 2 | 3 4 5 6 7 8 9 [10 | 11. } 12

Bl C|A]C|B|C|B|C|D|®B][B][C
M3 [14| 15) 16 | 17 | 8] 19 | 20 | 2T | 22 | 23 | 24

DI CICFB [Bl CaB|C.| €| &ECHD
35 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36

"B |D|C|B[B|B|C|D|[C|[D|C]EB
37 (38 | 39 | 40 | 41 | 42 | 43 | 44 ‘

B'} Bl C| C|C | B]| A/ B

Topic Wise Additional Short Questions and Answers

3

';' 7.1- Definition of Computational Thinking
E 1. What is computational thinking?
E

Ans: Computational Thinking (CT) is a problem-solving process that involves a
set of skills and. techniques to solve complex problems in a way that a can be
executed by a computer. This approach can be used in various fields beyond
tomputer science, such as biology, mathematics, and even daily life
2. What are the four key components of computational thinking?
‘Ans: The four key components are decomposition, pattern recognition,
_abstraction, and algorithms.
- 3. What is decomposition in computational thinking?

§ ‘Ans: Decomposition is the method of breaking down a complicated problem

.~ 'nto smaller, more convenient components. Decompasition is an important

——

172

<\ep n u.mputatuonaﬂ thmkmg It involves dividing a complex problem intg
smaller, manageable tasks

4. What is pattern recognition in computational thinking?

Ans: Pattern recognition involves looking for similarities or patterns among and
within problems. Pattern recognition is an essential aspect of computationa
thinking. It involves identifying and understanding regularities or patterns
within a set of data or problems.

5. What is abstraction in computational thinking?

Ans: Abstraction is the process of hiding the complex details while exposing
only the necessary parts. It helps reduce complexity by allowing us to focus on
the high-level averview without getting lost in the details.

6. What is an algorithm in computational thinking?

Ans: An algorithm is a step-by-step collection of instructions to solve a problem
or complete a task. An algorithm is a precise sequence of instructions that can
be followed to achieve a specific goal.

7. Give an example of an algorithm used in dally life.
Ans: Following a recipe to bake a cake is an example of an algorithm. The
recipe provides a list of ingredients and step-by-step instructions to mix them
and bake the cake.

7.2- Principles of Computational Thinking
8. What is the first step in computational thinking?
Answer: Problem understanding.

9. What does Problem understand mean?

Ans: Understanding a problem involves identifying the core issue, defining the
requirements, and setting the objectives. This involves thoroughly analyzing the
problem to identify its key components and requirements before attempting t¢
find a solution.

10. Why is problem understanding important?

Answer: It provides clarity and focus, defines goals, leads to efficient solutions
and avoids mistakes,

11. What is the role of defining goal in problem understanding?

Ans: Proper understanding of the problem allows you to define clear and
achievable goals. You can determine what the final outcome should look like
and set specific objectives to reach that outcome.

12. How does problem understanding help to find efficient solution? |
Ans: When you comprehend the problem well, you can devise more efficient |
and effective solutions. You can choose the best methods and tools to address |
the problem, saving time and resources. |

o

13. Which foundational step will lead to better and more effective
solutions?

Ans: Always take time to thoroughly understand a problem before starting to
solve it. Ask questions, gather information, and clarify any doubts. This
‘foundational step will lead to better and more effective solutions.

14, Which steps should keep in mind before writing code of a problem?
‘Ans: 1. Identify Requirements 2. User Needs 3. Technical Constraints
'15. What are the key principles that guide the process of problem-solving

in a structured manner:
Ans. Computational thinking involves several key principles that guide the

. “process of problem-solving in a structured manner. _

-« Problem understanding + Problem simplification . Solution
. ‘selection and design
© {16. What is problem simplification in computational thinking?
~ - Ans: Simplifying a problem involves breaking it down into smaller, more
' manageable sub-problems. Example: To design a website, break down the tasks
- into designing the layout, creating content,.and coding the functionality.
17. What is solution selection and design.in computational thinking?
Ans: Choosing the best solution involvés evaluating different approaches and
selecting the most efficient one. Designing the solution requires creating a
- detailed plan or algorithm.
18. What is solution selection? :
Ans: Evaluating different approaches to choose the most efficient and effective

solution,
19. What is involved in solution design? |
Ans: Creating a detailed plan or algorithm for implementing the chosen

solution. .

- 20, What did Albert Einstein emphasize about problem understanding?

- Ans: He suggested spending most of the time understanding the problem and
- less time thinking about solutions.

®7.3- Algorithm Design Methods

- 21, What-are algorithm design methods?

~Ans; Algorithm design methods provide a range of tools and techniques to

. :tackle various computational problems effectively. Each method has its

- Strengths and weaknesses, making it suitable for different types of problems.

- 22, What are flowcharts? '

, jAns: Flowcharts are visual representations of the steps in‘a process or system,

;- depicted using different symbols connected by arrows.

.23, What is the purpose of flowcharts?

- Ang; They are widely used in various fields, including computer science,

;Engineering, and business, to model processes, design systems, and
“Ommunicate complex workflows clearly and effectively.

S bn

3

Computer- (9")

e et e i .

174

———— e et i s e e A et

24. tht are the beneflts of usmg ﬂowchart?
Ans: Clarity, communication, problem solving and documentation.
25. When were the first standardized flowchart symbols developed? OR

Who developed the first standardized flowchart symbols?
Ans: The first standardized flowchart symbols were developed in 1947 by the
American National Standards Institute (ANSI).

26. Name any two standard symbols used in flowcharts and their
purposes.

Ans: - Oval (Terminal): Represents the start or end of a process.

- Rectangle (Process): Represents a task or operation.

« Parallelogram (Input/OQutput): Represents data input or output.

. Diamond (Decision): Represents a decision point with branching.

« Arrow (Flowline): Indicates the direction of flow.

27. Which computer scientists popularize the flowcharts?

Ans: Flowcharts were popularized by computer scientists such as John von
Neumann and Herman Goldstine in the early days of computing.

28. What is Pseudocode?

Ans: Pseudocode is not actual code that.can be run on a computer, but rather
a way to describe the steps of an algorithm in a manner that is easy to follow
29. What are the benefits of using pseudocode?
Ans: It helps programmers and students focus on the logic of the algorithm
without worrying about the syntax.of a specific programming language. It
combines the structure of programming clarity with the readability of plain
English, making it a usefultool for planning and explaining algorithms.

30. What is the main difference between flowcharts and pseudocode?
Ans: + Pseudocode: Uses plain language to describe steps, useful for
algorithm documentation.

+ Flowcharts: Use graphical symbols for a visual representation, ideal for
understanding processes at a glance.

31. Why pseudocode is used?

Ans. Using pseudocode has several benefits:

« Clarity:dt-helps in understanding the logic of the algorithm without worrying
about syntax.

- Planning: It allows programmers to outline their thoughts and plan the steps
of the algorithm.

» Communication: It is a universal way to convey the steps of an algorithm,
making it easier to discuss with others.

32. Explain the purpose of a decision symbol in a flowchart.

Ans: A decision symbol represents a point where the process branches based
on a yes/no or true/false condition.

———— s

g, |

I&
|

A’ Plus Rehmmn Series 175

— e

33 How does pPseudocode help in software development?
Ans: Pseudocode helps outline the algorithm's logic, making it easier to
convert into code and communicate among team members using different

programming languages.
34, What is the role of the modulo operator (%) in determining if a

number is even or odd?
Ans: The modulo operator (%) checks the remainder when a number i$

- “divided by 2. If the remainder is 0, the number is even; otherwise, it's odd:

-4- Algorithmic Activities

~ 35. What is the purpose of design and evaluation ' techniques in

- algorithms?
- Ans: To understand how efficiently algorithms solve problems.

36. What does time complexity measure in an algorithm?
Ans: Time Complexity measures how fast or slow an.algorithm performs. It

shows how the running time of an algorithm changes as the size of the input

increases.
37. What is Big O notation used for i in time complemty" OR How is time

| - complexity commonly expressed?
- Ans: Time complexity is expressed using Big-O notat|on such as O(n), O(logn),

| “or O(n?). It helps us compare different algorithms to see which one is faster.

~ 38. Why is time complexity important?
- Ans: It helps compare algorithms to determine which one is faster and more

efficient for larger input sizes.
' 39. Why should we consider space complexity when designing algorithms?
- Ans: To ensure that'the algorithm can handle large inputs without exceeding

' memory constraints.
* 40. What techniques can be used to evaluate algorithms?

Ans- Techniques include dry runs and S|mu|at|ons to test the correctness and
- efficiency of algorithms. »
\ {1 Give an example of how input size affects time complexity.
- Ans: Searching for a name in a list of 10 names takes less time than searching
4 i a list of 1,000 names. Time complexity helps analyze this difference.

- 42, What is space complexity?

. Ans: Space complexity measures the amount of memory an algorithm uses
" relative to input size. It is essential to consider both the memory required for

the input and any extra memory used by the algorithm. 4

- Compu b fh&) ~'
17() i ke { R

7 5 Dr Run
43, What is a dry run in the context of algorithms?

Ans: A dry run involves manually going through the algorithm with sample da: -

to identify any errors.

44. What is the purpose of a dry run of a flowchart?

Ans: A dry run of a flowchart involves manually walking through the flowchars
step-by-step to understand how the algorithm works without™using 3
computer This helps identify any logical errors and understand the flow «
control.

45. What are the steps in performing a dry run of pseudocode?

Ans: A dry run of pseudocode involves manually simulating the execution of
the pseudocode line-by-line. This helps in verifying the'logic and correctness
of the algorithm.

46. What is simulation in computer science?

Answer: Simulation is we use of computer programs to create a model of a
real-world process or system. This helps us understand how things work by
testing different ideas or algorithms withoutfieeding to try them out in real
life,

47. Why is simulation used?

Ans: « Testing Algorithms: We can Use simulation to see how well an algorithm
works with different types of data, For example, if we want to test a new way tc
sort numbers, we can simulate it with different sets of numbers to see how fast
it is.

« Exploring Scenarios: Simulation allows us to create many different situations
to see what happens. For.example, in a science experiment about plant growth.
we can simulate different amounts of water or sunlight to find out which
conditions help plants grow best.

48. What are some examples of simulation?

Ans: Weather forecasting, traffic flow, and scientific expenments

49, What are benefits of simulation?

Ans: « Cost-Effective: It is often cheaper and faster to run simulations than i©
conduct real experiments,

« Safe; We can test dangerous situations, like a fire in a building, without putting
anyone at risk.

« Repeatable: We can run the same simulation multiple times with different
settings to observe how things change.

50. Give an example of a simulation application.

Ans: « Weather Forecasting: Meteorologists use simulations to predict the
weather. They input data about temperature, humidity, and wind speed into 3
computer model to see how the weather might change over the next few days

: jr':w-‘;" -

L g Y |.: '"“'"""‘ 0

= Traffic Flow: City planners can simulate traffic to see how changes to roads

or traffic lights might affect the flow of cars. This helps them design better roads

and reduce traffic jams.

51. What is the difference between a dry run and simulation?

Ans: A dry run is manual and often used for small-scale tests, while a simulation
involves computer programs and is suitable for large-scale, complex scenarios.
52. What are some scenarios where simulation is useful?

Ans: Testing algorithms, weather forecasting, traffic flow analysis, and

" - modelling dangerous situations like fires.

8. Stop

53. What are the steps to dry run a flowchart for adding two numbers?

Ans: 1. Start

2. Input the first number (e.g., 3)

. Input the second number (e.g., 5)
- Add the two numbers (3 + 5 = 8)

5. Output the result (8)

.6- Introduction to LARP (Logic of Algorithms fo

Resolution of Problems:

54. What does LARP stand for and what is its purpose?
Ans: LARP stands for Logic of Algorithms for Resolution of Problems. It is an
‘interactive method to learn how algorithms work by running them and seeing

the results.
55. Why is LARP Important?

. Ans: LARP helps you:

+ Understand how algorithms work.

_ |+ See the effect of different.inputs on the output.
. '+ Practice writing and-improving your own algorithms,

56. What are the key components of writing algorithms in LARP?

‘Ans: Algorithms in_ LARP start with START and end with END. They use
commands Jike WRITE for output, READ for input, and IF..THEN..ELSE for

decision-making.

- | 57. What are flowcharts in LARP used for?

. | Ans: Flowcharts in LARP visually represent the steps of an algorithm using
- istandard symbols. They help learners understand the logical flow and test the
. 1 dlgorithm step-by-step.

© 158, How can we draw flowcharts in LARP?

. Ans: Drawing flowcharts in LARP involves steps using standard flowchart
- 'symbols such as rectangles for processes, diamonds for decisions, and

parallelograms for input/output operations. Once the flowchart is created, it
Can be executed in LARP by translating the flowchart into LARP syntax.

\u3 ‘l .' .‘ .A
v 4 1D TN &8
t;:»,.‘, AN AR T O SN e

59. What are the three main types of errors in algorithms?

Ans: » Syntax Errors: These occur when we write something incorrectly in oyr
algorithm or flowchart. For example, missing a step or using the wrong symbo:
. Runtime Errors: These happen when the algorithm or flowchart is being
executed. For example, trying to perform an impossible operation, such i
dividing by zero.

- Logical Errors: These are mistakes in the logic of the algorithm that cause
to behave incorrectly. For example, using the wrong condition in a decizicn
step
60. What is meant by debugging in an algorithm?
Ans: The process of finding and fixing errors in an algorithm or flowchart.
61. What is the benefit of using comments in algorithms?
Ans: To help spot mistakes and understand what each part ofthe algorithm :<
supposed to do. :
62. Mention two debugging techniques used for-an-algorithm.
Ans: « Trace the Steps: Go through each step of your algorithm or flowchart
to see identity where it goes wrong.
« Use Comments: Write comments or nates.in your algorithm to explain what
each part is supposed to do. This can help you spot mistakes.
« Check Conditions: Ensure that all.conditions in decision steps are correct.
- Simplify the Problem: Break down the algorithm into smaller parts and test
each part separately.
63. What is the significance of error messages in debugging of an
algorithm? |
Ans: Error messages provide clues about where the problem is, making it easie-
to locate and fix.errors.
64. Why are logical errors the hardest to find?
Ans: Logical errors do not stop the program from running but result in incorrect
outputs, making them harder to identify.
65. What is the origin of the term "debugging"?
Ans: The term originated when a moth was found causing problems in an early
computer. The moth was removed, and the process was called "debugging”
66. What is an example of a common error message in LARP?

Ans: Here are some common error messages you might see in LARP and what
they mean:

« Missing Step - You probably forgot to include an important step in your
algorithm. '

« Undefined Variable - You are using a variable that hasn't been defined yet.

* Invalid Operation - You are trying to perform an operation that is not allowed

like dividing by zero. ‘

_ 1
|
|
1

