

Hydrocarbons

11.1 Hydrocarbons

Multiple Choice Questions (MCQs)

200									
1.	Organic chemistry is primarily concerned with:								
	the study of inorganic compounds								
100	® the chemistry of carbon compounds								
	© the study of biochemistry	try							
2.	is not classified as an organic compound.	3.5							
	Proteins B Enzymes Carbon dioxide Carbohydra	ites							
3.	Most organic compounds contain carbon and often oxygen:								
	(a) nitrogen (b) sulphur (c) phosphorus (d) hydrogen								
4.	Organic molecules are usually and complex in nature	: :							
	(A) large (B) small (C) simple (D) intricate	7.							
5.	The number of compounds formed by carbon is than those form	ıed							
	by all other elements combined:								
	(A) less (B) equal (C) more (D) incomparab	le							
6.	Hydrocarbons consist only hydrogen and:								
. ".	(A) carbon (B) oxygen (C) nitrogen (D)								
7.	Common uses of hydrocarbons include:								
	(A) fertilizers (B) fuels (C) metals (D) solvents	60							
8	Hydrocarbons are classified into such as alkanes, alkenes, alkyr	leš,							
	and aromatic hydrocarbons:								
	(A) metals (B) nonmetals (C) structural types (D) natural type	S							
9,	Only are discussed in this chapter among hydrocarbons:	.:							
	(A) aromatic hydrocarbons (B) alkynes -	,							
	© alkenes								
10.	A characteristic feature of hydrocarbons is that they contain only	/:							
	(A) carbon and hydrogen (B) carbon and oxygen								
	© hydrogen and oxygen © nitrogen and sulphur								

Short Answered Questions

1. What are hydrocarbons?

Ans. Hydrocarbons are simple organic compounds made up only of carbon and hydrogen atoms. They form the basis of many fuels such as natural gas petrol and diesel. They are also used to make complex substances like plastics and pharmaceuticals.

2. Why are organic compounds significant?

Ans. Organic compounds include a wide range of substances from biomolecules like proteins and carbohydrates to industrially important materials like pharmaceuticals and synthetic fibers. Their diversity and complexity make them essential in biology and industry.

3. What distinguishes organic from inorganic compounds?

Ans. Organic compounds contain carbon and hydrogen and may include other elements like oxygen and nitrogen. They do not include some carbon-containing compounds like carbonates and oxides which are classified as inorganic.

4. How many organic compounds are known?

Ans. Several million organic compounds are known. These compounds are found naturally or are synthesized in laboratories. Their large number shows the versatility of carbon to form stable and varied molecular structures.

5. What makes carbon unique in forming compounds?

Ans. Carbon can form four covalent bonds with other atoms including itself.

This allows it to create a variety of stable and complex molecular structures making it capable of forming more compounds than all other elements combined.

6. What are the uses of hydrocarbons?

Ans. Hydrocarbons are mainly used as fuels including natural gas LPG CNG petrol diesel and kerosene. They are also key for making chemical products like plastics synthetic fibers and medicines.

7. What are the main types of hydrocarbons?

Ans. Hydrocarbons are categorized into alkanes alkenes alkynes and aromatic hydrocarbons. Each type has unique properties and uses in various industries.

8. Why are alkanes significant?

- Ans. Alkanes consist of carbon and hydrogen atoms linked by single bonds. They are stable and commonly used as fuels in various forms like gas and oil due to their less reactive nature compared to other hydrocarbons.
- 9. How are complex compounds derived from hydrocarbons?
- Ans. Hydrocarbons serve as feedstock for making complex compounds.

 Through chemical reactions these simple molecules are turned into more complex ones with specific functional properties.
- 10. What role do hydrocarbons play in everyday life?
- Ans. Hydrocarbons are crucial in daily life as the power vehicles heat homes and are the base for many everyday products like plastic containers and pharmaceuticals. Their energy content and versatility make them indispensable in modern society.

Exercise

What do you understand by the term structural formula of an organic compound?

Ans. The formula which shows actual arrangement of atoms in an organic compound is called structural formula.

Example:

H | H-C-H | H Methane

11.2 Alkanes

Multiple Choice Questions (MCQs)

11.	Alkanes are saturated	hydrocarbons	because th	ney contain	only:
(a) (iii)		•			

(A) Double bonds (B) Triple bonds (C) Single bonds (D) Ionic bonds

12. The molecular formula of propane is:

® C₃H₆

® C3H8

 \mathbb{C} C_2H_6

® C₄H₁₀

13. How many carbon atoms are present in hexane?

A 4

(B) 5

(C) 6

m 7

14. What is the IUPAC name for the compound $CH_3 - CH_2 - CH_2 - CH_3$?

(A) Methane

B Ethane

© Propane

D Butane

15.	5. In IUPAC nomenclature, the prefix 'eth-' indicates the presence							
	1 carbon atom	B 2 carbon atom	s © 3 carbon atom	s 10 4 carbon atoms				
16.	Which alkane ha	as the molecular	formula C ₄ H ₁₀ ?					
	Methane	Propane	© Butane	D Ethane				
17.	Identify the sim	Identify the simplest hydrocarbon:						
	Methane	® Ethane	© Propane	D Butane				
18.	The chemical fo	rmula C _n H _{2n+2} r	epresents:	# P				
	Alkenes	® Alkynes		Alkanes				
19.	Which term des	cribes a hydroc	arbon chain whe	re all carbons are				
	linked by single	bonds?						
	Saturated	® Unsaturated	© Cyclic					
20.	IUPAC nomenc	lature involves tl	ree parts: root, p	orefix, and:				
	Base	® Suffix	© Addition	① Connector				
21.	The prefix for a	three-carbon all	kane is:	\$ 15 W				
	(A) Meth-	® Eth-	© But-	[®] Prop-				
22.	The root 'oct-' in IUPAC nomenclature indicates a chain of how							
	many carbon at	oms?						
	(A) 6	® 7	© 8	1 9				
23.	The IUPAC nar	ne for $\mathrm{CH_3}$ – (CH	$I_2)_4 - CH_3$ is:	JO WIN				
	A Hexane	B Pentane	© Butane	① Heptane				
24.	What type of bonding is found between carbon atoms in alkanes?							
	(A) Ionic	® Covalent	© Hydrogen	Metallic				
25.	Alkanes react w	ith oxygen in a r	eaction type calle	d:				
	Addition	Substitution	© Combustion	Fermentation				
26.	The term 'n-but	ane' refers to:	•					
	A branched is	omer.	B A cyclic mole	10.000 NO. 100 No. 100				
	© An unsaturated molecule D An unbranched molecule							
27.	Methane can als	so be referred to	as:	** & @ CO YOO N				
28	The parent hy	drocarbon	® iso-Methane					
	© n-Methane		Aromatic met	hane				
28.	985 W. 15 ⁷⁰	the formula C ₇ I	• •	6.11				
••	Methane	Heptane		Nonane				
29.			as a fuel for bark	Transfer to the state of the st				
30	Methane Ethana appoints	Propane A propane	© Butane	® Ethane				
30.	A 4	of how many car B 3	© 2	D 1				
	4 ·	د س	<u>u</u> 2	⊕ 1 .				

Short Answered Questions

1. What are alkanes?

Ans. Alkanes are simple organic compounds consisting solely of carbon and hydrogen atoms linked by single bonds. They are also known as saturated hydrocarbons because every carbon atom in an alkane uses all its four valencies to bond with other carbon atoms or hydrogen atoms.

2. Why are alkanes called saturated hydrocarbons?

Ans. Alkanes are termed saturated hydrocarbons because all the carbon-carbon bonds in alkanes are single bonds, which means all the carbon atoms have reached their maximum capacity of forming single bonds with hydrogen or other carbon atoms.

3. What is the general formula for alkanes?

Ans. The general formula for alkanes is CnH2n+2 where n represents the number of carbon atoms in the molecule. This formula helps determine the number of hydrogen atoms in an alkane based on its carbon content.

4. Why is methane called the parent hydrocarbon?

Ans. Methane is known as the parent hydrocarbon because it is the simplest form of alkane, consisting of only one carbon atom bonded to four hydrogen atoms. It serves as a fundamental building block for more complex hydrocarbons.

5. How is IUPAC nomenclature used to name alkanes?

Ans. IUPAC nomenclature for naming alkanes involves identifying the longest continuous chain of carbon atoms and then naming it based on the number of carbons it contains. The chain is modified by prefixes and suffixes that describe any branching or functional groups.

6. What role does the root play in IUPAC nomenclature of alkanes?

Ans. In IUPAC nomenclature, the root of the name indicates the number of carbon atoms in the longest continuous chain of the alkane molecule.

This root helps in forming the base of the compound's name.

7. What does the suffix indicate in the naming of alkanes?

Ans. The suffix in the naming of alkanes indicates the type of chemical compound. For alkanes, the suffix "-ane" is used to show that the compound is a saturated hydrocarbon with single bonds only.

- 8. How do you determine the prefix in alkane nomenclature?
- Ans. The prefix in the nomenclature of alkanes describes the groups attached to the longest chain. It provides information about the number and type of branches or functional groups attached to the main chain.
- 9. What is the significance of the chain length in naming alkanes?
- Ans. The length of the carbon chain in an alkane determines the root of its IUPAC name and affects the compound's physical and chemical properties. Longer chains typically mean higher boiling points and greater molecular weights.
- 10. How are complex alkanes named?
- Ans. Complex alkanes are named by identifying the longest carbon chain as the base name and adding prefixes that describe any branches or substituents. The position of the branches is indicated by numbers, ensuring the lowest possible digits for the substituents along the chain.

Interesting Information!

- ☆ What distinguishes alkanes from other compounds in terms of reactivity?
- Ans. The distinguishing feature of alkanes making them distinct from other compounds is their lack of reactivity towards usual chemical reagents.

Exercise

- Name the following compounds according to IUPAC system of nomenclature.
- (i) $CH_3 CH CH CH_2 CH_3$ | | | $CH_3 CH_3 CH_3$

IUPAC Name: 2,3-Dimethylpentane

(ii) CH_3 | $CH_3 - C - CH_2 - CH_3$ | $CH_3 - CH_3$ | CH_3

IUPAC Name: 2,2-Dimethylbutane

Exercise

- ☆ How many methyl and methylene, groups are present in each of the above compounds?
- Ans. 1. Methane (CH4)

Open Structure:

- Methyl groups (-CH₃): 1
- Methylene groups (-CH₂-): 0
- 2. Ethane (C_2H_6)

Open Structure:

- Methyl groups (-CH₃): 2
- Methylene groups (-CH₂-): 0
- 3. Propane (C_3H_8)

Open Structure:

- Methyl groups (-CH₃): 2 (one at each end)
- Methylene groups (-CH₂-): 1 (middle carbon atom)
- 4. Butane (C₄H₁₀):

Open Structure:

- Methyl groups (-CH₃): 2 (one at each end)
- Methylene groups (-CH₂-): 2 (two central carbon atoms)

11.3 Preparation of Alkanes

Multiple Choice Questions (MCQs)

31.	The process of breaking higher molecular mass hydrocarbons into						
	smaller ones is called:						
	Mydrolysis						
32.	Naphtha is heated at aroundoC in the presence of a catalyst to						
<i>J</i>	produce smaller hydrocarbons.						
	© 100°C ® 250°C © 500°C ® 750°C						
33.	The catalyst used in the cracking process of naphtha to produce						
	smaller hydrocarbons is called:						
	(a) Platinum (b) Iron (c) Nickel (d) Zeolite						
34.	Cracking naphtha produces containing 5 to 10 carbon atoms.						
•	Alkanes and Alkenes B Alkanes and Alkynes						
	© Alkenes and Aromatics						
35.	Alkanes can be prepared from alkenes and alkynes using hydrogen						
	gas in the presence of as a catalyst.						
	(a) Platinum (b) Nickel (c) Silver (d) Copper						
36.	The addition of hydrogen to alkenes or alkynes to form alkanes is						
	also known as a reaction:						
. * .	(A) Oxidation (B) Substitution (C) Reduction (D) Addition						
37.	Methane cannot be prepared by reducing:						
	Alkyl halides						
38.	Alkyl halides can be reduced to alkanes using hydrogen generated						
× ,	from the reaction of zinc metal with:						
	Sulfuric acid						
39.	The reaction between zinc and hydrochloric acid produces						
	along with hydrogen:						
	@ Zinc chloride ® Zinc sulphate © Zinc nitrate ® Zinc acetate						
40.	In the reaction used to reduce alkyl halides, the intermediate						
	hydrogen species is symbolized as:						
	$\textcircled{0} [H^{+}] \textcircled{0} [H_{2}] \textcircled{0} [H^{-}] \textcircled{0} [2H]$						
41.	Reduction of ethene $(CH_2 = CH_2)$ with hydrogen in the presence of						
	nickel catalyst at 200°C produces: (a) Methane (B) Ethane (C) Ethane (D) Propage						
	(A) Methane (B) Ethane (C) Ethane (D) Propage						

42.	Chloromethane can be reduced to methane using zine and:
	A Hydrochloric acid B Sulfuric acid
	© Nitric acid
43.	The hydrogenation of alkynes involves addingmolecules of
	hydrogen.
	(A) One (B) Two (C) Three (D) Four
44.	The process that balances the availability of petroleum fractions
	with demand by transforming larger hydrocarbons into smaller
	ones is called:
· .	(a) Fractionation (b) Catalysis (c) Cracking (d) Reforming
45.	The industrial application of reducing alkenes to produce
	banaspati ghee involves a reaction.
	(A) Hydrolysis (B) Dehydration (C) Fermentation (D) Reduction
	Chart Anguaged Quanting
	Short Answered Questions
1:	What is cracking in the context of hydrocarbon processing?
Ans.	Cracking is a process used in the petroleum industry to break down
	larger, less useful hydrocarbons into smaller, more valuable ones like
	alkanes and alkenes. This is achieved by heating large hydrocarbons in
	the presence of a catalyst such as zeolite, which facilitates the breaking
	of molecular bonds.
	Naphtha Heat Alkanes and alkenes containing
* ;	(Mixture of Zeolite 5 to 10 carbon atoms hydrocarbons)
2.	How does the cracking process contribute to meeting fuel demand?
Ans.	Cracking adjusts the balance between the availability and demand for
**	petroleum products by converting less desired heavy hydrocarbons into
,	highly demanded lighter ones. This process increases the overall supply
	of fuel, making it a critical step in refining petroleum.
3.	What is the reduction of alkenes and alkynes?
Ans.	The reduction of alkenes and alkynes involves adding hydrogen to these
	molecules to convert them into more saturated alkanes. This reaction
ES	typically uses a nickel catalyst and occurs at high temperatures,

transforming unsaturated hydrocarbons into saturated ones.

- 4. How is methane different in the context of reduction reactions?
- Ans. Methane, being the simplest alkane, cannot be prepared by reducing other hydrocarbons through hydrogenation because it is already fully saturated. Therefore, methods used to synthesize higher alkanes from alkenes and alkynes do not apply to methane.
- 5. What is the role of zinc in the reduction of alkyl halides?
- Ans. Zinc is used in the reduction of alkyl halides to generate hydrogen gas, which then reacts with the alkyl halide to produce alkanes. This reaction typically involves the formation of zinc chloride as a byproduct, highlighting zinc's role as a reducing agent.

$$Zn + HCI \longrightarrow ZnCI2 + 2[H]$$
 $R \longrightarrow X \xrightarrow{[2H]} R \longrightarrow H + H \longrightarrow X$
 $CH_3 \longrightarrow CI + Zn/HCI \xrightarrow{[2H]} CH_3 \longrightarrow H + H \longrightarrow CI$
Chloromethane

- 6. What is a photochemical substitution reaction?
- Ans. A photochemical substitution reaction involves the replacement of a hydrogen atom in an alkane with a halogen atom, facilitated by the presence of ultraviolet light. This type of reaction is particularly common with chlorine, producing alkyl halides as products.

$$CH_4 + Cl_2 \xrightarrow{hv} CH_3 - Cl + H - Cl$$

Methane Chloromethane

- 7. How do alkanes react in combustion reactions?
- Ans. Alkanes combust in the presence of oxygen to produce carbon dioxide and water, releasing a significant amount of heat. This reaction is exothermic and is the basis for the use of alkanes as fuels in various applications, from domestic heating to powering engines.

- 8. Why are alkanes referred to as paraffins?
- Ans. Alkanes are sometimes called paraffins, a term derived from the Latin words for "little affinity," reflecting their low reactivity due to the

non-polarity of their carbon-hydrogen bonds. This makes them relatively inert compared to other organic compounds.

- 9. What causes the low reactivity of alkanes?
- Ans. The low reactivity of alkanes can be attributed to the non-polarity of their carbon-hydrogen bonds and the similar electronegativity values of carbon and hydrogen. These properties result in nearly equal sharing of electrons, making alkanes chemically stable.
- 10. What are the risks associated with natural gas leaks in homes?
- Ans. Natural gas, primarily methane, can form explosive mixtures with air when leaked into enclosed spaces. Ignition of such mixtures can lead to explosions, posing significant safety risks in residential settings, highlighting the need for careful handling and monitoring of gas appliances.
- Give reactions of halogenation of alkanes in dimlight? 11.

Ans.
$$CH_4 + Cl_2 \xrightarrow{hv} CH_3 - Cl + H - Cl$$

Methane $CH_3 - Cl + Cl_2 \xrightarrow{hv} CH_2Cl_2 + HCl$
 $CH_3 - Cl + Cl_2 \xrightarrow{hv} CH_2Cl_2 + HCl$
 $CH_2Cl_2 + Cl_2 \xrightarrow{hv} CHCl_3 + HCl$
 $CHCl_3 + Cl_2 \xrightarrow{hv} CHCl_3 + HCl$
 $CHCl_3 + Cl_2 \xrightarrow{hv} CHCl_3 + HCl$
 $CHCl_3 + Cl_2 \xrightarrow{hv} CCl_4 + HCl$

Tetrachloromethane or

Important Reactions

Multiple Choice Questions (MCQs)

carbon tetrachloride

46.	Alkanes are sometimes referre	ed to as	due to their lev		
	Paraffins	© Arenes	Cycloalkanes		
47.	The term "little affinity" assoc	iated with alkan			
201	High reactivity	® Low chemical affinity			
	© Solubility in water	Bonding w	ith metals		
48.	Alkanes are chemically inert to	most laboratory	reagents due to the		
100	of their bonds.	· · · · · · · · · · · · · · · · · · ·			
	High polarity	Metallic ch	aracter		
	© Ionic nature	Non-polarit	y		

49.	In halogenati	on, alkanes react	with chlorine	in the presence of		
	to give alkyl halides.					
	A Heat	® Water	© UV light	① Oxygen		
50.	The reaction	between methane	and chlorine in	the presence of UV		
	light produces	chloromethane ar	ıd:	×.		
	Methanol	I	B Hydrochlor	ric acid		
	© Carbon dio:	kide	Water			
51.	Combustion o	f alkanes produces	CO2, H2O, an	d:		
	A Heat	B Light	© Smoke	(D) Soot		
52.	The primary	cause of explosi	ons in homes	due to natural gas		
	leakage is the	formation of a flar	mmable mixtur	e of methane and:		
	(A) Carbon dio	xide	Water vapo	or		
720	© Hydrochlor	ic acid®	Air			
53.	Which type of	of reaction involve	s the replacen	nent of hydrogen in		
	alkanes with	a halogen atom?				
	Addition	B Elimination	© Substitutio	n		
54.	The electrone	gativity values of	carbon and hy	drogen do not differ		
	appreciably,	making the bond	ing electrons	between C - H and		
()//	C-C bonds:			J. UIN		
			® Almost equally shared			
			Transferred			
55.	During the co	mbustion of meth	ane, the numbe	er of moles of oxygen		
	required is:			#		
	(A) 4	® 3	© 2	D 1		
56.	In a photoche	emical substitution	reaction, the p	resence of is		
	crucial.		ψ			
	UV light	® Oxygen	© Water	① Carbon dioxide		
57.	The byproduc	ct of methane com	bustion is prim	arily:		
	(a) Carbon mo	noxide	Methanol	390 1000		
9	© Ethane		Carbon die	oxide		
58.	Natural gas p	rimarily consists o	f:			
•	(A) Ethane		© Propane	1 Butane		
59.	Alkanes do no			r non-polar nature.		
	Acids		® Bases			
	© Oxidizing	agents	All of the a	above		
60.		- 	1875 1871 III	arbon and hydrogen		
	in alkanes is		E. T.	100 - 100 -		
	A High	® Moderate	© Low	None		

Short Answered Questions

1. What is cracking in the context of hydrocarbon processing?

Ans. Cracking is a process used in the petroleum industry to break down larger, less useful hydrocarbons into smaller, more valuable ones like alkanes and alkenes. This is achieved by heating large hydrocarbons in the presence of a catalyst such as zeolite, which facilitates the breaking of molecular bonds.

2. How does the cracking process contribute to meeting fuel demand?

Ans. Cracking adjusts the balance between the availability and demand for petroleum products by converting less desired heavy hydrocarbons into highly demanded lighter ones. This process increases the overall supply of fuel, making it a critical step in refining petroleum.

3. What is the reduction of alkenes and alkynes?

Ans. The reduction of alkenes and alkynes involves adding hydrogen to these molecules to convert them into more saturated alkanes. This reaction typically uses a nickel catalyst and occurs at high temperatures, transforming unsaturated hydrocarbons into saturated ones.

4. How is methane different in the context of reduction reactions?

Ans. Methane, being the simplest alkane, cannot be prepared by reducing other hydrocarbons through hydrogenation because it is already fully saturated. Therefore, methods used to synthesize higher alkanes from alkenes and alkynes do not apply to methane.

5. What is the role of zinc in the reduction of alkyl halides?

Ans. Zinc is used in the reduction of alkyl halides to generate hydrogen gas, which then reacts with the alkyl halide to produce alkanes. This reaction typically involves the formation of zinc chloride as a byproduct, highlighting zinc's role as a reducing agent.

6. What is a photochemical substitution reaction?

Ans. A photochemical substitution reaction involves the replacement of a hydrogen atom in an alkane with a halogen atom, facilitated by the presence of ultraviolet light. This type of reaction is particularly common with chlorine, producing alkyl halides as products.

7. How do alkanes react in combustion reactions?

Ans. Alkanes combust in the presence of oxygen to produce carbon dioxide and water, releasing a significant amount of heat. This reaction is exothermic and is the basis for the use of alkanes as fuels in various applications, from domestic heating to powering engines.

8. Why are alkanes referred to as paraffins?

Ans. Alkanes are sometimes called paraffins, a term derived from the Latin words for "little affinity," reflecting their low reactivity due to the non-polarity of their carbon-hydrogen bonds. This makes them relatively inert compared to other organic compounds.

9. What causes the low reactivity of alkanes?

Ans. The low reactivity of alkanes can be attributed to the non-polarity of their carbon-hydrogen bonds and the similar electronegativity values of carbon and hydrogen. These properties result in nearly equal sharing of electrons, making alkanes chemically stable.

10. What are the risks associated with natural gas leaks in homes?

Ans. Natural gas, primarily methane, can form explosive mixtures with air when leaked into enclosed spaces. Ignition of such mixtures can lead to explosions, posing significant safety risks in residential settings, highlighting the need for careful handling and monitoring of gas appliances.

Interesting Information!

★ Why can a mixture of natural gas and air cause explosions at homes?

Ans. A mixture of natural gas (methane) and air may explode when ignited.

This is the main cause of explosion at homes where gas leakage occurs.

Exercise

- 1. In the reduction of alkyl halides with Zn / HCl, alkyl halide is being reduced. Which species in this reaction is being oxidized?
- Ans. In the reduction of alkyl halides with Zn/HCl, zinc metal (Zn) is being oxidized. Zinc loses electrons to form Zn²⁺ ions, undergoing oxidation. These electrons are transferred to the alkyl halide, reducing it to an alkane. Thus, zinc acts as the reducing agent and is oxidized in the process.
- 2. During the combustion reaction of ethane, which bonds are being broken and which are being formed?
- Ans. During the combustion reaction of ethane, the C H and C C bonds in ethane and the O = O double bonds in oxygen are broken. New bonds formed include the C = O double bonds in carbon dioxide and the O H bonds in water. So, bonds broken: C H, C C, and O = O; bonds formed: C = O and O = H bonds.

- 3. What products other than CH_{3Cl} are formed when methane reacts with chlorine gas?
- Ans. When methane reacts with chlorine gas, products other than chloromethane (CH₃Cl) include dichloromethane (CH₂Cl₂), chloroform (CHCl₃), and carbon tetrachloride (CCl₄). Additionally, hydrogen chloride (HCl) gas is formed as a byproduct. Multiple chlorination steps lead to these fully substituted products.

		- 14		MCQ	s KEY			-	
1	B	2	©	3.	(D)	4	A	5	©
6	(A)	. 7.	B	8	©	9	0	10	A
11	©	12	B	13	©	14	0	15	B
16	©	17	(A)	18	(D)	19	A	20	- B
21	0	22	©	23	A	24	B	25	©.
26	①	27	(A)	28	(C)	29	B	30	© .
31	B	32	©	33	(D)	34	A	35	₿
36	©	37	D	38	©	39	· (A)	40	0
41	B	42	A	43	B	44	©	45	0
46	A	47	B	48	(D)	49	(C)	50	B
51	A	52	0	53	(C)	54	B	55	©
56	A	57	0	58	₿	59	0	60	©

1.	Tick	(√)	the	correct	answer.

Which other atom is almost always	present	along	with	carbon	atom
		14.0			
in all organic compounds?	25	g (g	19)		
	Which other atom is almost always in all organic compounds?				Which other atom is almost always present along with carbon in all organic compounds?

(A) Oxygen

® Nitrogen

© Hydrogen

D Halogen

(ii) Which other metal can be used to reduce alkyl halides?

(A) AI

® Mg

· © Ni

(D) Co

(iii) If naphtha undergoes a combustion reaction what products do you expect to form?

(A) Alkanes

B Alkenes

C CO2 and H2O

D Both alkanes and alkenes