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Complex Numbers

INTRODUCTION

Complex numbers are an extension of the real numbers designed to solve equations
that have no solutions within the realm of real numbers. The history of mathematics
shows that man has been developing and enlarging his concept of number according
to the saying that “Necessity is the mother of invention”. In the remote past they started
with the set of counting numbers and invented, by stages, the negative numbers,
rational numbers, irrational numbers etc. Since square of a positive as well as negative
number is a positive number, the square root of a negative number does not exist in the
realm of real numbers. Therefore, square roots of negative numbers were given no
attention for centuries together. However, recently, properties of numbers involving
square roots of negative numbers have also been discussed in detail and such numbers
have been found useful and have been applied in many branches of pure, applied,
financial and computational mathematics.

1.1 Complex Numbers
The numbers of the form z=a+ib where a,be /K and i= \/—_1 , are called complex
numbers. For example, 3 + 4i, 2 —% i, —7-2i etc. are complex numbers and the set of

all complex numbers is denoted by C

1.1.1 Recognition of Real and Imaginary Parts

Let us start with considering the following equation: Note

¥4+l =0 = =-1 = x=1J-1 Every real number is a complex
V=1 does not belong to the set of real numbers. We, ~ Mumber with 0 as its imaginary
therefore, for convenience call it imaginary number .
and denote it by i (read as iota).
In the complex number z=a+ib, a is called real part and b is called imaginary part
of the complex number. For convenient, real part is denoted by Re z and imaginary part
by Im z of a complex number z. For example, if z =3 + 4, then

Rez=3and Imz=4.

The product of a non-zero real number and i is also an imaginary number and is

written as 1. Thus 2i,—3i, \/gi, —1—211' are all imaginary numbers.
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Conjugate Complex Numbers: Let z=a+ibbe a complex number, then a — ib is
called the complex conjugate of a + ib. It is denoted by z . Thus 5— 4i is complex

conjugate of 5 + 4i and -2 -3i is complex m A real number is self-conjugate.
conjugate of —2 +3i.

1.1.2 Operations on Complex Numbers

With a view to develop algebra of complex numbers, we state a few definitions.

The symbols a, b, ¢, d, k, where used, represent real numbers.

(1) Addition: (a+ib)+(c+id)=(a+c)+i(b+d)

(1) k(a+ib)=ka+ikb

(ii1) Subtraction: (a+ib)—(c+id) = (a+ib)+[—(c+id)]
=a+ib+(—c—-id)=(a—c)+i(b—d)

(iv) Multiplication: (a + ib)(c + id ) = ac + iad + ibc + i*bd = (ac — bd) + i(ad + bc)

1.1.3 Complex Numbers as Ordered Pairs of Real Numbers

We can define complex numbers also by using ordered pairs.

Let C be the set of ordered pairs belonging to /K x 7K which are subject to the
following properties:

1) (a,b)=(c,d)ye>a=crb=d
(i) (a,b)+(c,d)=(atc,b+d)
(ii1) (a, b)(c,d) = (ac—bd, ad + bc)
Then C is called the set of complex numbers. It is easy to see that
(a,b)—(c,d)=(a—c,b—d)
(iv) If k is any real number, then k(a,b)= (ka,kb)
Properties (i), (ii) and (iii) respectively define equality, sum and difference of two

complex numbers. Property (iv) defines the product of a real number and a complex
number.

Example 1: Find the sum, difference and product of the complex numbers (8, 9) and
(5,-6)
Solution: Sum= (8 +5,9-6)=(13, 3)
Difference = (8 — 5,9 — (— 6)) = (5, 15)
Product = (8:5-(9)(-6), 9-5+(-6)(8))
= (40 + 54,45 - 48) = (94, -3)
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1.1.4 Properties of the Fundamental Operations on Complex Numbers
It can be easily verified that the set C satisfies all the field axioms i.e., it possesses the
properties of real numbers.
By way of explanation of some points we observe as follows:
(1) The additive identity in C is (0, 0).
(i1)) Every complex number (q, b) has the additive inverse (—a, —b) i.e.,

(a, b) + (—=a, —b) = (0, 0)

(iii) The multiplicative identity is (1, 0) i.c., bm ]
(a, b)-(1,0)=(a1- b0, b-1 +a-0) = (a, b). The set C of complex
= (1, 0)(a, b) numbers does not satisfy the

order axioms. In fact, there
is no sense in saying that one
complex number is greater
or less than the other.

(iv) Every non-zero complex number {i.e., number
not equal to (0,0)} has a multiplicative inverse.
The multiplicative inverse of (a, b) is

Fraw)
a’+b a’ +b’

(a b) ( a -b

DWELpEE j = (1, 0), the identity element
a +b” a +

_ a -b

- (az +02 7 a* +b? j(a,b)
(V) (a,0)[(c,d) £ (e, f)]=(a, b)(c,d) % (a,b)e,[)
Example 2: If z, =(4, 2) and z, =(3,—1), then find 4,

Zy

Solution: Given z, =(4, 2), z,=(3,-1)
Now, =i (4’ 2) =4+2i
z, (3-1) 3-i

Multiply the numerator and denominator by the complex conjugate of z, =3—i.

z, 4420 4420 3+i
—_—= = X

z, 3—-i 3-i 3+i
_ @A +BHO+2)HB)+(2)(H) _12+4i+6i+ 2i°

() - @)’ 9~
1241022 10410, L,
9—(-1) 10

z .
Thus, L =1+i
Zy
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1.1.5 Argand Diagram
Every complex number will be represented by one and only one point of the coordinate plane
and every point of the plane will represent one and only one complex number. The
components of the complex number will be the

coordinates of the point representing it. In this 4__)/
representation the x-axis is called the real axis and the B2.2) 37 4G.2)
y-axis is called the imaginary axis. The coordinate o 21 °
plane itselfis called the complex plane or z—plane. The 1+
figure representing one or more complex numbers on  x'¢———— ————>x

. . 432101 1 2 3 4
the complex plane is called an Argand diagram. The -1+
Argand diagram is a way of representing one or more C(—3. ) R .
complex numbers on the complex plane. Points on the ' 54 P (2,-2)
x-axis represent real numbers whereas the points on the 41

y

y-axis represent imaginary numbers.
In an Argand diagram, the complex number x +iy is uniquely represented by the order
pair (x, y). In Figure (i), the complex numbers 3 + 2i, — 2 + 2i, -3 — 2i and 2 — 2i
correspond to the order pairs (3, 2), (-2, 2), (=3, —2) and (2, —2) respectively have been
represented geometrically by the point 4, B, C and D.

Modulus of Complex Number: The real number MY 4(53)
\Jx* + " is called the modulus of the complex number / X%
x+iy and it is denoted by |x+iy|.In Figure (ii), O_A‘ v y
represent the modulus of x+iy. In other words, the < 5 < M >

modulus of a complex number is the distance from the
origin to the point representing the number.

(1+2i)’

—1

(1+2i)  1+4i+4> 344 240 —6-3i+8i+4i’

Example 3: If z then evaluate |z|

yl

Solution: z=

2—i 2—i 2—i  2+i 2% —i’
_ —6+5i—4 -10+35i
4-(-) 5
= z=-2+i
Taking conjugate

Z=-2—i=-2+i
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and  [2]=|-2—i]=[(2) +(-1)" = V4+1

= z]=5
VP~ EXERCISE 1.1 4

1. Simplify the following:

=21
1 i ? Gy iV (i) (— 19 (iv) (=12
. Prove that z =z iff z is real.
3. For ze C, show that:
z+z

O =

=Re(z) (ii)

(iii) |2 =22 (iv) l:%
z |

4.  Find the multiplicative inverse of each of the following numbers:

@) 47 (i) (2,-5) (iif) (1,0)
5. Separate into real and imaginary parts (write as a simple complex number):
N 2-Ti L (=2+30) i (4430
1 i) ——— il — v) ———
® 4+5i @) 1+i (i) I+i ) 4-3i
4%

6. If z,=2+i,z, =3-2i,z, =1+ 3i then express in the form of a+ib.

7. If zy=2+7iand z, = -5+ 3i, the evaluate the following:
() Pz-4z] G Pz+2z] i) [T 422] (V) |(5+2)]

1.2 Equality of Two Complex Numbers
The two complex numbers z, =a+bi and z, =c+di are said to be equal iff their real
and imaginary parts are equal i.e., a+bi=c+di<>a=candb=d.
Example 4: If (3+2i)(x+iy)=5+12i, where x,y€ R, then find the values of x and y.
Solution: Given that B+2)(x+iy) =5+12i

= 3x+3iy2ix+ 2t =5+12i

= GBx-2»)+2x+3y)i=5+12i
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Comparing real and imaginary part, we have

3x—2y=5 ...(1)
2x+3y =12 ...(1)
Multiplying equation (i) by 3 and equation (ii) by 2, we have
Ox—-6y=15
4x + 6y =24

Add the equations
Ox—6y+4x+ 6y =15+24

13x =39
x=3
Substitute x = 3 in equation (i), we have
93)-6y =15
—6y=-12
y=2

Thus,x=3,y=2
1.2.1 Square Root of a Complex Number

The square root of a complex number is another complex number that, when squared,
give the original complex number.
Let w= p+giis a square root of a complex number z = x+1iy, where p,q,x,ye R,
then w=+/z ...(1), taking square on both sides, we get
w?=z
(p+igl=x+iy
PP+2pqi—q* =x+iy
Equating real and imaginary part, we have
x=p*—q* ...(11)
v =2pq ...(1i1)
We know that (p* + ¢ = (p*—¢°)* + 4p°¢
Substitute x= p°> —g>, y =2pq in the above equation, we get
(P*+ ¢ =x"+)

= PP =+’ ...(iv)

From equation (ii) and (iv), we have x= p>* —g”and p°+¢q" =+/x’ + )’ . Solving for
the values p and ¢, we have

. X+ +x 4 oest X +9? —x
P2 2 WEAEH 2
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From equation (iii): y =2 pq, thus we have
e »>0,ifp and ¢g have the same sign
e <0, ifp and ¢g have opposite sign
e y=0,ifp=00rg=20
Therefore, the square root of the complex number z = x+iy is given by

Vz=Jx+iy=+ @Jriy @

2 v 2

or \/;+{ |Z|j s o= J ...(v), where |z|=4/x’+ y* 20 is modulus of z.

2 V|V 2

equation (v) is the required formula for square root of complex numbers.

Example 5: Find the square root of complex y
number 5 + 12i and also represent the square S
. 3__
roots on an Argand diagram. 5
Solution: Let x+ yi =5+12i 2 °
1__
=>x=5andy=12>0 x' x

|z|=|5+124 =5 +12* =13, +

Applying the square root formula for complex 3%
numbers, we get =37

,4——

13+5 {12 [13-5 V'
S2i=4| 222 22 22
o (\lzm zj
:J_r(\/§+ix/2):i(3+2i)

Thus, the square root of the complex number 5 + 12i are 3 + 2i and —3 — 2i are shown
in adjacent figure.

VP EXERCISE 1.2

1. Find the values of x and y in each of the following:
(1) x+iy+2-3i=i(5-i)(3+4i)
(1) (x+iy)(1—i)=(2-3)(-5+5i)(—-i3/5)

(iil) ——+-—2—=4+5i
2+i 3-i



2. If zy=-13+24i and z,=x+ yi, find the values of x and y such that
z,—z,==27+15i

3. Find the value of x and y if:

—2-5i

(1+3i)°

4. If z;=2+3i and z, =1-«a, find the value of ¢ such that Im(z,z,)="7.

() (x+iy) =25+60i (i) (x+iy) =64+48 (i) x+iy=

5. Ifz,=x+yiandz,=a+ bi, find x, y, a and b such that z, +z, =10 + 4i and

z,—z,=6+2L
6. Show that Vz,z,eC,zz, =2z,
7. Find the square root of the following complex numbers:
(1) —-7-24i (i) 8—-6i (i1) —15-36i (iv) 119+ 120i
. Find the square root of 13— 20~/3i and represent them on an Argand diagram.
9.  Find the value of x and y if (=7 +#)(x+iy)+(-1-5i)=i(11-i)
10. Find the value of x and y if (5—2i)(x+iy)+3=i(11-i)—4i
11. Find the values of u and v if:
() (u+iv) =20+21 (i) (u+iv) =48-10i
12. If z,=4+5i and z, = a —2i, find the value of « such that Re(z,z,) =20.

1.2 Complex Polynomials as a Product of Linear Factors

A complex polynomial P(z) is a polynomial function of the complex variable z with
complex coefficients. It is expressed in the general form as

P(z)=az"+a, z""' +..+az+a,
Where a,,a, ,...,a,,a,are complex numbers (a,#0), and n>0is an integer
representing the degree of the polynomial.
For examples P(z)=(1-i)z + 3i, B(z)=(5 — 4i)z> + (2 + i)z + (3 - 4i)and
P(z)=(2-i)z°+2z% +(5+3i) are the examples of linear, quadratic and cubic

complex polynomials respectively. If n =0, then P(z) becomes a constant polynomial.
A fundamental property of complex polynomials is that they can always be factored
into a product of linear factors.

According to the Fundamental theorem of algebra, a polynomial of degree n >1 has
exactly n roots in complex numbers system C.
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A corollary to this theorem states that any polynomial P(z) of degree n can be factored
completely into a constant a and » linear factor over C in the form

P(2)=a(z—2)(z~2,).(z~2,) (1)
where z,z,,...,z, are complex roots of the polynomial. Once we know the roots of a
polynomial equation, we can apply equation (1) to factored the polynomial P(z) into n
linear factors. Specifically, if z, and z, are roots of the polynomial equation P(z), then
the equation must be P(z)=(z—z)z—-z,). For examples, the polynomial
P(x)=x”+4 consists of real coefficient has no real roots, so it cannot be factored into
linear polynomials with real coefficients. However, if we considered as a complex
polynomial P(z) =z’ +4, we can easily be factored into two linear factors as
Z°+4=(z+2i)(z-2i)
where 2i and —2i are the complex roots of z° +4=10
m If P(z) is a polynomial function, the values of z that satisfy P(z) = 0 are called the zeros of
the function P(z) and roots of the polynomial equation P(z) = 0.
Example 6: Factorize the polynomial P(z) =z>+ (1 —1) z—1.
Solution: P(z)=z2*+(1-i)z—i
=z +z—iz—i
=z(z+1)—i(z+1)
=(z+1)(z—1)
Example 7: Factorize the polynomial P(z) =z —4iz+12
Solution: P(z) =z —4iz + 12
=22 —4iz—(-12)
=22 —4iz—’12 2=l
=22 —i6z + 2z -’12
= z(z — 6i) + 2i(z —60)
=(z—6i)(z + 2i)
Example 8: Factorize the polynomial P(z) =z* + (1 +i )z> + iz.
Solution: P(z) =22+ (1 +i) 22 +iz
=z[22 + (1 + i)z + ]
=z +z+iz+ ]
=z[z(z+ 1) +i(z+ 1)]
=2z + D)z + )]
=z(z + 1)(z + i) are linear factors.
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Key Concept

The Rational Root Theorem is a mathematical tool used to find all possible rational roots of a
polynomial equation with integer coefficients. According to rational root theorem:

If a polynomial P(x)=a x"+ aHx”1 +...+a,x+a, has integer coefficients, then every rational

root g (in simplest terms) satisfies:

@) p is a factor of the constant term @, (ii) ¢ is a factor of the leading coefficient a,,.

Example 9: Factorize the + polynomial P(z) =z* — 3z° + z + 5.

Solution: According to rational root theorem the possible root of the equation are +1

and £5. On checking, we see that z=—1 is the root of the polynomial P(z) because
P(-1)=(-1 =31+ (-1)+5=0.

So z + 1 is a factor of the P(z). Using synthetic division

1|1 -3 1 5
1 4 -5
|1 -4 5 0
Therefore, 23—322+z+5:(z+1)(zz—4z+ 5) ...(1)

Next find the factors of z° — 4z + 5using quadratic formula
22 —4z+5=0, here a=1,b=-4,¢c=5
—(—4) 2 (—4)* = 41)(5) _4+416-20 4£v-4 4+2i
o= 2(1) 2 2 2
= z=2%2i

The quadratic factors are z* —4z+5 :(z—(2+i))(z—(2—i)):(z—2—i)(z—2+i)
Substitutes in equation (i), we have the

23—322+Z+5:(Z+l)(z—2—i)(z—2+i)

1.3.1 Solution of Quadratic Equations by Completing the Square

As we learned in previous classes, completing the square is a powerful and systematic
method for solving quadratic equations. This technique involves rewriting a quadratic
equation in the form ax 2+ bx + ¢ = 0 into a perfect square trinomial, which can then be
solved by taking the square root of both sides. This method is especially valuable when
the quadratic equation does not factor easily. By completing the square, we can solve
any quadratic equation, even those with irrational or complex roots, making it a more
effective technique in algebra.

Example 10: Solve the equation 222 — 12z + 50 = 0 by completing square method and
hence express it as a product of its linear factors.
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Solution: 2z*2-12z+50=0

Dividing both sides by 2
z22—6z+25=0

= z2-23)z=-25

Add 32 on both sides
2 2(3)z+32=-25+32
(z—3)2=-16
= z—3=2%4-16
= z=3+4i

Therefore, z =3+4ior z=3-4iare the required complex roots.
Using the corollary of Fundamental theorem of Algebra the equation can be factorized
using the roots 3 + 47 and 3 — 4i as:

27— 122+ 50 =2(z> — 6z + 25)=2(z—(3+4i))(z—(3—4i)) = 2(z—3—4i)(z—3+4i)
Hence, 2z° —12z+50=2(z—3-4i)(z—3+4i)

P~ EXERCISE 1.3 _d

1.  Factorize the following:
(i) d*+4b? (i) 9a*+ 16b? (i) 3x*+3y? (iv) 144x% +225)?
(v) z2-2iz—1 (vi) 2+ 6z+13  (vii) 22+4z+5  (vil) 2z°-22z+65
2. Factorize the following polynomial into its linear factors:
i) Z2+8 (i) 2+27 (i) Z22-22+16z—32 (iii) z*+21z"-100
(iv) =16 (i) z'+3z°-4 (iv) z'+52°+6 (v) z'+7z°—144

3. Find the roots of z*+7z°—144=0 and hence express it as a product of linear

factors.
4.  Solve the following complex quadratic equation by completing square method:

(i) 2z° -3z+4=0 (i) z*-6z+30=0  (iii) 3z°—18z+50=0
(i) z°+4z+13=0 (i) 2z°+6z+9=0  (iii) 3z2°-5z+7=0
5. Solve the following equations:
(i) 224-32=0 (i) 32°-243z=0 (iii) 52°-5z =0
(iv) 2-522+z-5=0 (v) 4z'-25z2°+21=0 (vi) Z2+z2°+2z+1=0

6. Find a polynomial of degree 3 with zeros 3, —2i, 2i and satisfying P(1) =20.
7. Find a polynomial of degree 4 with zeros 2i, —2i, 1, —1, and satisfying

P(2) = 240.
8.  Find a polynomial of degree 4 with zeros 4, —4, 1 + i, 1 — i and satisfying
P(2)="172.
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1.4 Three Cube Roots of Unity

Let x be a cube root of unity We know that the numbers containing

i are called Complex numbers. So

W | =

x =(1)
= X =1 _1+\/§l and _1_\/51 are called
= X¥-1=0 ” 2 . )

. complex or imaginary cube roots o
:‘> x-DE*+x+1) =0 ity
Either x—-1=0= x=1
or X+x+1=0

S EV T B ERVE
2 2
—_1+/3;

N x = 1—2@ (o NTT=1)

Thus, the three cube roots of unity are:

—1+~/3i —1-~/3i
and

2 2
1.4.1 Properties of Cube Roots of Unity

(1) Each complex cube root of unity is square of the other

—1+\/§i_ —1—\/51'_ )
> = w, then 5 =,

—1+~/3i _ ~1+-3i

w , then
2 2

(i) The sum of all the three cube roots of unity is zero ie., 1+ @+ @>=0

1,

If

and if = o’ [w is read as omega]

(iii) The product of all the three cube roots of unity is unity i.e., 1-0 -0’ =w’=1

1.5 Four Fourth Roots of Unity
Let x be the fourth root of unity

-

x=(1)
= x=1
= xX*-1=0
= @-DK*+1)=0
= PX-1=0 = =1 = x=+1

and ¥*+1=0 =>x*=-1=x=%1.
Hence four fourth roots of unity are: 1, -1, i, —i.
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1.5.1 Properties of four Fourth Roots of Unity
We have found that the four fourth roots of unity are: 1, -1, +i, —i
(1) Sum of all the four fourth roots of unity is zero
l+(-1)+i+(=)=0
(i1) The real fourth roots of unity are additive inverses of each other
1 and —1 are the real fourth roots of unity and 1 + (-1)=0=(-1) + 1
(ii1) Both the imaginary fourth roots of unity are conjugate of each other

i and —i are imaginary fourth roots of unity, which are obviously conjugates
of each other.

(iv) Product of all the fourth roots of unity is —1 i.e., 1 x (=1) x i x (=i) =1
Example 11: Prove that:(x’ + %) = (x + )(x + wy)(x + @)
Solution: R.H.S = (x + y)(x + oy)(x + &’y)
=(x+y)x+(0+ o yx + @y
=@+ -xy+y) =x+y’ {reo=l,0+o’=-1}=LHS.
Hence proved.

VP~ EXERCISE 1.4 {4

1. Find the three cube roots of:

1 8 (i) -8 (i) 27 (iv) 64 (v) —625
2. Evaluate:
i) (1+o-o) (i) @™+ 0” +1 (i) (I1+w-)(1 -0+

(iv) (“FJ +£¥J ") (1+4=3) +(-1-+-3)°

3. Show that: () ¥—y=@r-»x-wy)x-ay)
() X*+y’+2 -3xyz=(x+y+z)(x+wy+ o2)(x+ oy + wz)
(i) (1+ o)1+ o)1+ o)1+ % ....2n factors = 1

4. Ifwisaroot of x> +x+ 1 =0, show that its other root is @* and hence prove that
@ =1.

5. Prove that complex cube roots of —1 are

1+ =13
2 an

d 5 ; and hence prove

that £_1+2\/§) J{I_FJ =-2. Prove that (—1++/-3)" +(~1-/-3)* =16

6. If wis a cube root of unity, form an equation whose roots are 2 and 2’




Unit o Complex Numbers <>

1.4 Polar Coordinates System

Polar coordinates are often more convenient than
Cartesian coordinates in situations involving
circular or rotational symmetry, or when a ~»
problem depends on distance from a fixed
point and angle relative to a reference direction.
Just as the Cartesian coordinate system uses an

Mathematics

ordered pair (x, y) to describe the position of a
point, the polar coordinate system determines
the position of a point using a directed
distance 7 from a fixed origin O (called the pole)
and an angle 6 that the line connecting the origin
to the point makes with the polar axis (typically
aligned with the positive x-axis).

00°

Polar axis

4%\5

3
2
270°

In polar coordinate system the location of a point P can be described by polar
coordinates in the form (r, 8), where r and 6 are real numbers.

y Rectangular coordinate

Polar coordinate

P(r, 0)

While 7 is typically considered non-negative (r > 0), it
is also possible for  to be negative (» < 0). The value
of r changes depending on its sign, and this affects the
position of the point in the plane.

When r > 0, the angle 6 is the measure of any angle in
standard position whose terminal side lies along the
line connecting the origin to the point P, measured
counter clockwise from the polar axis (positive x-axis).

For example, the polar coordinates (5,%] represent a

point 5 units away from pole at an angle of % radians.

Polar axis

\4

(0] Polar axis
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When r < 0, the angle 8 is the measure of any angle
in standard position whose terminal side lies along
the line connecting the origin to the point Q, but the
point Qis  located |7] units  in  the opposite / \\'\ n

direction (i.e., @ + ) from the polar axis (positive x-

axis). For example, the polar coordinates

z . : Q(i %]
—S,Z represent a point 5 units away from the

pole, but in the direction of 2 +7= vy radians.
(=5, 7/4) and (5, 5S7/4) represent the same point in the plane -

1.4.1 Polar Coordinate System of a Complex Number

Consider the adjoining diagram representing the 1

. A (r, 0)

complex number z = x+iy. From the diagram, { v
n X
s

.ﬂ
we see that x=rcosfdand y=rsind, where y=rsin@

r=|z| is modulus and @ is called an argument e'\

& S

ofz. Olx=rcos® M %

Hence  x+iy=rcos@+irsind (1)

where r=|z|=x*+)* and O=tan"'Z (x#0)
Equation (i) is called the polar form of the y

complex number z . . . .
P W We can write cos@ +isind = cis@

Example 12: Express the complex number 1+i+/3 in polar form.

Solution: Step—1 : Putrcosf=1 andrcos = B

Step—11 : = (1)’ + (V3]

= r=1+3=4 . Ifx=0,y>0then9=%
= r=2 -
\/g \/_ . Ifx=0,y<0then9=—;
Step—III: @=tan' —=tan"' V3= 60°
P 1 e Ifx=0,y=0then 0 is undefined.

Thus 143 =2 cos 60° +i2sin 60°

Principal Argument: The principal argument 0 of a complex number z = a + bi is
the angle between the positive real axis and the line joining (a, b) to the origin
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in the Argand plane.
argz=6=tan"' [éj

a
It is denoted by arg. It is a single, specific value of the argument, typically chosen
within a standard range: arg z € (=, x].

1.3.3 Operations on Complex Numbers in Polar Form

Addition and Subtraction of Complex number in Polar form
Let z =17 (cosf, +ising,)and z,=r(cosb, +isind,)be two complex number in

polar form. The addition and subtraction of two numbers can be computed simply as
z,+z, =1;(cos, +ising,)+r,(cosd, +isinb,)

and z,—z, =r(cos, +ising,)—r,(cosd, +isinb,)

Multiplication of Complex number in Polar form

Let z, =n (cos(9l +isind, ) and z, =r,(cosb, +i sin@z)be two complex number in

polar form. The product of two complex numbers can be derived by multiplying them
directly and simplifying
z,-z, =1,(cosf, +isin@, ) r,(cos6, +isinb,)

Z,rZy=F1-" rz(cosﬂ1 cos@, +icos@,sinf, +isind, cos@, +i’ sinb, sin@z)
z,-z, =11, [(cosd, cosd, —sinf, sin, ) +i(cosf, sind, +sind, cosh,) - iP=-1

2,2, =11y [ cos(6,+0,)+isin(6, +6,) (Using trigonometric identities)

Thus, multiplying two complex numbers in polar form involves multiplying their
moduli and summing their arguments 1.e., arg(z,- z,) = arg(z,) + arg(z,)

Example 13: Find the product of 5(cos%+ isin%j and 4(00’5377Z + isin%rj.

Solution: Let z, =5 (cos %+ isin% ]and z,= 4(005377[+ isin%j

Here, 1, =5and 6, =£, while r, =4 and 6, _3z
6 2

Substitute this value in the product formula
z-z, =11, cos(6,+6,)+isin(6,+6,)

=5x4| cos £+3—7T +isin £+3—7[ =20 c0s5—7z+isinz
6 2 6 2 3 3
. . Sr .. 5&
Thus, the required product is 20 (cos 3 +isin Y J
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Division of Complex Number in Polar Form
Let z, =r/(cosf, +isind, )and z,=r,(cosd, +isind,)be two complex number in
polar form. The formula for division of two complex numbers in polar formagn pe
derived by rationalizing the denominator.

z, _ 1(cosé, +isind, )

z r,(cos6, +isind, )

z, _ 1i(cos@, +isind,) (cosd, —isin),) Multiply and divide the equation
o (cosd, +isin6,) (cosd, —isind, ) (by conjugate of cos @, +isind, j

r, (cos6, cosb, +sind, sind, ) +i(sind, cosd, —cosé, sinb, )

Zy

Zy

z, 1 cos’ @, +sin’0,

z, I .. : . .. .
0 [cos(@l -6, ) +i s1n(49] -0, ) ] (Using trigonometric identities)
Z, h

Thus, the modulus of the division of two complex numbers equals the quotient of
their moduli, while the arguments of the quotient is the difference between their
arguments.

Thus, when dividing two complex numbers, the modulus of the result is the ratio of
their moduli, and the argument of the result is the difference between their arguments

2y

iLe., arg (i j: arg(z,)—arg(z,)

Example 14: Divide 2 cos7—7[+isin7£ by 3 cos| = Z |+isin| -
7 6 6 5 2 2

wn

=3

=

=

=

=

—

e}

-

N

Il

|
TN

@)

o

w2

+

.

=
~—_

o

=

o

N

[\

Il
| W
TN

o

o

w2
TN

|
~—

+

2

=

|
o | N
~—
~—

Here, 7, :2, 0, :7_7[9”2 _3 and@ , -
7 6 5 2
Substitute value in the quotient formula
2= i cos(6,-6,)+isin(6,-6,) ]
r2

Zy

i=%(coss—ﬁ +i sinsij is the required polar form of division of two complex
Z

number.
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Example 15: If z = x + iy, then write the equation |3z - i| = ‘3;+ 7‘ in term of x and y.

Solution: Given [3z—i|=[3z+7] ...()

132 —i] = [3(x+iv) — | = Bx+iBy—1)| = JBx)* + By —1)°

\32+ 7\ - ‘3x+3iy+ 7\ = [3x=3iy+7|=Bx+7+i(=3y)| = Bx+7)* +(-3)*

Substitutes these values in (i)

JBX +By—17 =Bx+7)* +(=3y)
Taking square on both sides
Bx)’+By-1)>=CBx+7) +(-3y)*
x> +9)? — 6y + 1 =9x? +42x + 49 + 9)?

= —6y+1=42x+49
= —6y =42x +48
or y==Tx-8

The equation y = —7x—8 represents a straight line in the complex plane.

=—— for z=x+1iy.
1 'y

Example 16: Show that (x+ 2)2 + y2 _Qif arg(“—;l j 3
Z—zl

z+2i x+iy+2i_x+i(y+2)_x+i(y+2)xx—i(y—2)

Solution: =
z=2i x+iy-2i x+i(y—2) x+i(y—2) x—i(y—Z)
N Z+2i_(x2+y2—4)+4ix_ x’+y -4 i 4x
z=2i x2+(y—2)2 ¥ +(y-2)7 xX+(y-2)
As arg Z+21j:3_7r
z—2i 4
4x
24(y=-2) | 3
= tan”' 2 (yz ) == = 2 4xz :tan?)—”:—l
+y -4 4 X +y -4 4
x2+(y—2)2
= 4x:—1(x2+y2—4) = X +4x+y’=4

Completing the square for x, we have
(x+ 2 +y*=8
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1.5 Complex Numbers in the Real World
(Voltage, Current and Resistance)

Ohm’s Law is a fundamental principle in physics that describes the relationship
between voltage ‘v’, current ‘I’ and resistance ‘R’ in an electrical circuit.
Mathematically Ohm’s Law can be expressed by the formula V' = IR .

when dealing with alternating current (AC) circuits, resistance generalizes
to impedance (Z). Resistance in a circuit is due to

inductor (X,) and capacitor (X.). Their difference is
reactance X = (X;) — (X,). Geometrically it is shown
in the adjacent figure. Here Z=R+iX

Then for AC circuits, Ohm’s Law in Terms of R

Impedance is expressed by the formula V'=[-Z.

Example 17: If the impedance of circuit is 11(cos 55.35° +isin 55.35°) ohms at a

X=(X)-(Xo)

voltage of 25(cos 30" +isin 30”) V, find the value of current in the circuit.

Solution: Substitute the voltage 25(cos 30° + [ sin 30°) and impedance
11(cos 55.35° + I sin 55.35°) into the equation V' = IZ, where V is voltage, I denote
the current and Z is impedance.

25(COS 30°+i sin 300) = ] .11(cos 55.35°+1i sin 55.35°)
_ 25(cos 30°+i sin 30°)
11(cos55.35° +isin 55.35°)

or

I= %[005(30" —55.35°)+isin(30° - 55.35°) |

I=227 [cos(—25.35:)+isin(—25.35") ]

Express into rectangular form
I=227[0.90+i(—0.42) |=2.04-0.95i

Thus, current is 6 —4.21i.

Cryptography: It is the science of securing information by transforming readable
messages called plaintext into secrete code called ciphertext using mathematical
algorithms and encryption keys. It consists of two main processes i.e., encryption to
lock message with complex math, and decryption to unlock it with the right key.
Example 18: The word "MATH" is to be encrypted by multiplying a complex number
k = 2 + 3i and then decrypted back to its original form using the concept of
multiplicative inverse in complex numbers.




Complex Numbers <> Mathematics

Each letter of the alphabet is assigned a numerical value as follows:
A=1,B=2,C=3,...,Z=26

Solution: First, we assign each letter in the word “MATH” a complex number with

zero imaginary part. The encryption and decryption shown in the table below

Letter [ Complex Number (z) zencrypted =z X k z decrypted = z encrypted / k| Letter
M 13+ 0i (13 +0i)(2 +3i) =26 +39i| (26 +39i) / (2 +3i) =13 + 0i M
A 1+0i (1+0i)2+3i))=2+3i 2+3)/2+3)=1+0i A
T 20 + 0i (20 + 0i)(2 + 3i) =40 + 60i| (40 +607)/2+3i=20+ 0i T
H 8 + 0i (8+0i)(2+3i))=16+24i 16+24i /2 +3i=8 +0i H

¥V~ EXERCISE 1.5

1. Plot the following points:

i (2 75) (i) (-3,120) (i) [2, %j @iv) (

57[)
6

5 . 2 9 197 ) .. 5 5z
(v) (—5, gj (vi) (—3, —?j (111) (_E’ —?j (1v) (—5, EJ

2. Express the following complex numbers in polar form :

53

(1) 4+3i (i) 1+7 (ii1) %+gi (iv) —2——
. 2
(v) —§+@i (vi) l+£i (vii) ———ﬁi
7 7 2 2 3 3
3. Convert each of the complex number z in the rectangular form x+iy:
1 4 coss—7z+isinz (i1) 3 cos7—”+isin7i
3 3 2 6 6
237 . 11z
(iii) |Z| 7, arg(z) = 17 (1v) |z| =11, arg(z)= EETY
(v) |z| =% arg(z) = —117—; (vi) 2 cos (—33) +i2sin (—33)
(vii) |Z| =12, arg(z) =n
4. If z, = Q(COSS—H + isinz ]and z,= S(COSZ +isin - jthen find
4 4 . 3 3
(1) z+z, (i) z -z, (i) z-z, (iv) —
2



5.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

If z =7(cosz3—”+isin23—ﬂj and z, =ll(cosﬁ+isinll—ﬂ-j then find the
12 12 12 12

following and express the result into x + iy form

() z+z, (i) z-z (i) z-z (v) =
4

Divide z, = 6(cos 150° + i sin 150°) by z, = 3(cos 30° + i sin 30°) and express in

x+1iy form.

Multiply z, = 2(cos 60° + i sin 60°) and z, = 5(cos 90° + i sin 90°) and express in

x+iy form.

Find the modulus and argument of z = -2 — 2i.

. . . N 27w : . .
Write the equation arg(z -2+ 1) = By in cartesian form, ifz = x+iy.

If z=x+iy and arg(ﬂJ o

=2 show that x>+ y*—4x+2y-5=0.
z+1-2i 4

If z=x+iy and arg(z—2-3i)—arg(z+2+3i)=2z, show that 2y = 3x.
Solve the equation |z—2i|= |E+ 2| for z=x+iy.
For z = x+iy, solve the equation |52+4+i| = |5§—3+2i|.

Determine the set of points z = x + iy that satisfy the equation |3E -2+ i| =[3z+i|.

An AC source supplies a voltage of V' = 120(cos%+i sin%j volts to a circuit

1+i\@
2

An AC circuit has an impedance of Z =3 — 6i ohms and is connected to a voltage
source of V=90 + 30i volts. Find the current in both rectangular and polar form.

with impedance Z = ohms. Calculate the current in polar form.

Encrypt the word "CODE" by multiplying the complex encryption key k=2 —i.
Then decrypt it back to the original word.

Consider the complex encryption key k£ = 3 — 3i. Encrypt the word "QUIZ", and
then recover the original word using the inverse of the key.

Encrypt the word “CLASS” by adding the complex encryption key k= — 3 + 4i.
Then decrypt it back to the original word.




INTRODUCTION

Functions are fundamental in mathematics, describing relationships between inputs
and outputs through a rule of correspondence. Understanding key concepts such as
domain, co-domain and range is essential for analyzing different types of functions,
including one-to-one, onto and bijective functions. Graphical representation helps in
identifying intersecting points, such as where a linear function meets the coordinate
axes, where two linear functions intersect or where a linear and a quadratic function
cross. These intersections provide valuable insights into solving equations visually.
Additionally, exploring square root and cube root function graphs allows for a deeper
understanding of their unique properties and behaviour. This unit will enhance
problem-solving skills by combining algebraic and graphical approaches to functions.

2.1 Concept of Function

The term function was recognized by a German Mathematician Leibniz (1646-1716)

to describe the dependence of one quantity on another. The following examples

illustrate how this term is used:

(1) The area “4” of a square depends on one of its sides “x” by the formula
A= x", 50 we say that 4 is a function of x.

¢e_9

(i1) The volume “V” of a sphere depends on its radius “7” by the formula

4 . .
V= girr3 , S0 we say that V is a function of'r.

A function is a rule or correspondence, relating two sets in such a way that each
element in the first set corresponds to one and only one element in the second set.

Thus in, (i) above, a square of a given side has only one area and in, (ii) above, a
sphere of a given radius has only one volume.

Now we have a formal definition:

2.1.1 Definition (Function, Domain, Codomain, Range)

A function f from a set X to a set Y is a rule or a correspondence that assigns to each
element x in X a unique element y in Y. The set X is called the domain of /.

The set of corresponding elements y in Y is called the range of f. While the
codomain of a function is the set Y in which function’s output values (range) lie.
Unless stated to the contrary, we shall assume hereafter that the set X and Y consist of
real numbers.
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Co-domain is the set of all possible outputs but the range is the actual set of outputs
produced by the function under the given domain that is range set is always a subset of co-domain.

2.1.2 Notation and Value of a Function
If a variable y depends on a variable x in such a way that each value of x determines

exactly one value of y, then we say that “y is a function of x”.

Swiss mathematician Euler (1707 — 1783) invented a symbolic way to write the
statement “y is a function of x” as y = f{x), which is read as “y is equal to fof x”.

A function can be thought as a computing
machine f that takes an input x, operates Function

on it in some way and produces exactly Inputx S Output /(x)
one output f(x). This output f(x) is called
the value of f'at x or image of x under f.

Computing Machine

the output f(x) is denoted by a single letter, say y and we write y = f(x).

The variable x is called the independent variable of f'and the variable y is called the
dependent variable of /. For now onward we shall only consider the function in
which the variables are real numbers and we say that f'is a real valued function of
real numbers.

Example 1:  Given f(x) =x> — 2x* + 4x — 1, find: i) f(0) (i) A1)
(1) f(-2) @iv) f(1 + x) (v) f(i j, x#0

Solution: f(x)=x>—2x*+4x—1
() f(0)=0-0+0—1=-1
(i) A=Y -2(1+41)-1=1-2+4-1=2
(i) f(-2)=(-2)’-2(-2)*+4(-2)-1=-8-8-8-1=-25
(iv) f(1+x)=(1+x°-2(1 +x)?*+4(1+x)—-1
=1+3x+3x%+x-2—4x—2%+4+4x—1
=x+x*+3x+2

(iv) f(l}(lj —2[lj +4(lj—1=%—%+f—1, x£ 0
X X X X X X X

Example 2:  Find the domain and range of f(x) = x°.
Solution: For every real number x, f(x) = x? is a non-negative real number. So,
Domain f'= set of all real numbers ; Range /= set of all non-negative real numbers.
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X
—.
x -4

Example 3:  Find the domain and range of f(x) =

X
2

Solution: Atx=2andx=-2, f(x)=

is not defined. So,

Domain f'= set of all real numbers except —2 and 2 or R—{-2,2}

X
Let y=— 1 :>y(x2—4):x:>x2y—4y:x
x —
2 —
Yyoxmay=0

—-(-D=x \/ (1)’ —4(»)(—4y) There are two types of

X = 5 intervals known as open

y interval and closed interval.

[ In an open interval (a, b), the

—+ 2 p gl
x= ﬂ ,y#0 endpoints are not included. In
2y a closed interval [a, b],

the endpoints are included.

xisdefinedas V y#0

For y =0, wehave 0= =>x=0

f0) =0

So, range f'= set of all real numbers or (—o0,)
Example 4:  Find the domain and range of f(x)=+/x"-9.

Solution: Yx*-9>0= x’-9>0 ...(0)
Let ¥ —9=0= x=43

2
X —

Critical points divide the number line into three regions:
Putx=-4in (i), 106920 (True)

Putx = 0in (i), =920 (False)

Putx =4 in (i), 16=920 (Trye)

So, domain f= (-0, —3] U [3, ©©)

The smallest value of ** = %1is 0 (when x =13).

= y= \/6 =0

As |x| increases beyond 3, x? — 9 grows to +oo, S0 y grows to +oo.
So, range 1 = [0, )

2.1.3 Vertical Line Test

The vertical line test is a method used to determine whether a graph represents a
function. A graph represents a function if and only if no vertical line intersects the
graph more than once. If any vertical line passes through the graph more than once, it
is not a function.
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Explanation is given in the figure.
y y y

a2
N\ T

(a) a function (b) a function (c) not a function (d) not a function

S
S

>

7o * T o

2.1.4 Types of Function

(i) One-to-One (Injective) Function

A function f is one-to-one if different inputs produce different outputs, i.e., if
S (x;) = f(x,) implies x,= x,. This means that no two different elements of the domain
map to the same element of the co-domain.

For example, /' (x) = 5x + 7 is one-to-one because if 5x + 7 = 5x,+ 7 implies x = x,.

(i) Onto (Surjective) Function

A function f: X — 7 is called onto (or surjective) function if every element in the
co-domain Y has at least one pre-image in the domain X. In other words, for every y
in Y, there exists an x in X such that f(x)=y.

For example, f(x)=2x+3, where the domain and co-domain are both real numbers.

-3 . . -3 .
Here y=2x+3 = x= yT . Here for each y in R, there exists y—3 in R such that

f [yT% j= v. Hence fis an onto function.

(iii)  Bijective Function
A function f: X — Y is called bijective if it is both one-to-one and onto.
Piecewise Function

A piecewise function is a function that is defined 3“y
by different expressions (or '"pieces") over 5
different intervals of its domain. Each piece applies .
to a specific part of the domain. g' X
- 1 (2x+1 if x<0 +32-/0 4 23 4
or example, f(x)—ixz_1 50 S
For x < 0, the function behaves like 2x+1 and for -3 5
A\ 4

x>0, it behaves like x*—1
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Example 5: Show that the function f(x)=x+1, where the domain and co-domain
are all real numbers, is bijective.
Solution: A function is bijective if it is both one-to-one and onto.
A function is one-to-one if f(x,)= f(x,) = x, =x, for f(x)=x+1
Suppose f(x,) = f(x))

x+1=x,+1

= X, =X,

So, the given function is one-to-one.
It is also onto because for every real number y, there is a real number x (specifically
x =y —1)such that f(y —1) =y — 1+1 = y. Therefore, f(x) is bijective.
Example 6: Show that the function f(x)=x" —2, where the domain and co-domain
are all real numbers, is neither one-to-one nor onto.

Solution: As f(x)=f(x,) = x}-2=x-2 = x' =x}

Taking square root, we get x, = x, or x, =—x,

This does not imply that x, = x, , for example
x=2,x,==2=x#x, and f(2)=2= f(-2).
Thus, fis not one-to-one.

Also, the element —2 in the co-domain R is the smallest

value that f(x)=x"—-2 can attain, and it is only

achieved when x = 0. However, any number less than —2

(in co-domain R) is not the image of any real number x in 3
domain R. For example, fix) = -3 =>x’—2=-3has no v
real root.
P EXERCISE 2.1 4
1. Giventhat: (a) f(x)=x*—1 (b) f(x)=+2x+3 Find:
® f(-3) (i) f(0) (i) f(x—2) (iv) f(x*+3)

Fing 2@+tM-/(a)
h

(1) f(x)=4x+7 (i) f(x)=sinx

(iii) f(x)=x*+x*-1 (iv) f(x)=tanx

and simplify where,
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3. Express the following:
(a) The area A of a square as a function of its perimeter P.
(b) The circumference C of a circle as a function of its area 4.
(c) The surface area S of a cube as a function of its volume V.
4.  Find the domain and the range of the function g defined below:

(1) gx)=5-x (i) gx)=Vx+2
. [6x+7,x<-2 s
) g0=3,73 " V) g)=l-5
5. Given f(x) =x* —ax* + bx + 1. If f(2) = -3 and f(-1) = 0. Find the values of
a and b.
xX+2

6. Find the domain and range of g(x)= 3

7. A stone falls from a height of 60m on the ground, the height / after x seconds is
approximately given by A(x) = 40 — 10x>.
(1) What is the height of stone when:
(a) x=1sec? (b) x=1.5sec? (c) x=1.7sec?
(i1)) When does the stone strike the ground?
8.  Consider the function f'(x) = 3x —5.
(1) Determine the domain and range of f'(x).
(i1) Is the function f one-to-one? Justify your answer.
(ii1) Is the function fonto if the co-domain is all real numbers? Explain.
2x-3
x+1
(1) Find the domain and range of f (x). (i) Determine whether f'(x) is onto.
(ii1) Prove that f'(x) is one-to-one.
10. Consider the function i R*"— R" defined by f (x) = ¢™. Show that f (x) is a
bijective.

9. Letf: R— R be defined by f(x) =

11. Let g¢ R—>R be given by g(x) = x>-3x. Determine if g(x) is injective and/or
surjective.
2.2 Finding the Intersecting Point(s) Graphically

The point of intersection is a point where two or more graphs meet on the coordinate
plane. This point represents the solution(s) to the equations of the given functions.

2.2.1 Intersection of a Linear Function and Coordinate Axes

As we know that linear function is a function in which the highest power of the
variable is one. While the coordinate axes refers to x-axis and y-axis in the Cartesian
coordinate system.
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Example 7: Find the points of intersection of a linear functiony=2x+6and

coordinate axes.

Solution: Table values and the graph of y =2x + 6
is given below:

X y=2x+6

-1 4
0 6
1 8

Hence, from the above graph, the points (-3, 0) and (0,6)are the points of

intersections of y = 2x+ 6 and coordinate axes.

2.2.2 Intersection of Two Linear Functions

The point of intersection of two linear
functions is the point where their graphs
cross each other. This means the two
functions have the same x and y values at
that point.

Example 8: Find the point of intersection of
y=3x+2 and y=—x+6.

Solution: Table of different values of x and y

is given below:

X y=3x+2 y=—x+6

-1 -1 7 I
0 2

By plotting the above points, we see that (1, 5) is the point of intersection of both the
straight lines as shown in figure.

2.2.3 Intersection of a Linear Function and a Quadratic Function

A line and a parabola can either intersect at two points, one point or not intersect at
all. If there are two solutions, the system has two points of intersection. A single
solution indicates that there is only one intersection point, suggesting that the line
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may be tangent to the parabola. If no solution exists, it means the line and the
parabola do not intersect.

Ay y y

7
19) X 19) / X [9) /

Two Solutions One Solutions No Solutions

=V

Example 9: Solve the linear function y =—x+3 and quadratic function
y=x"—6x+3 graphically.
Solution: Clearly (3, 0) and (0, 3) are the x-intercept and y-intercept respectively of

y=—x+3.
y=x>—6x+3 ...(1)
Put x =0 in (i), so (0, 3) is the y-intercept.
Put y =0 in (i), we have 1y
0=x"—6x+3
_—COE(6) ~4(1)3)
2(1)

L 6E\36-12
2
x_6i\/ﬁ

2
6+ 26
X =
2
x=3i\/g
x=3-6,3+6 ~H—
x=0.6,5.4 L 24

So (0.6, 0) and (5.4, 0) are the x-intercepts.
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Now we find vertex (4, k) of the parabola
b -6

k=3)-63)+3=-6
So, the vertex is (3,—6)
Hence (0, 3) and (5,-2)are the solutions (points of intersection) of the given

functions.

2.3 Graph of the Square Root Function

Example 10: Graph the square root function y = 2\/; +1

Solution: Clearly the domain of y = 2Jx +lisx> 0, as the square root of a negative

number is not a real number. The range of y = 2Jx +1is y >0, as the square root of

a non-negative number is also non-negative.
Table values and the graph of the function are given below:

X y=2\/;+1 -

0 1 gy

1 3 7

2 3.8 6 y=2x+1

3 4.5 5

4 5 4

5 55 3

6 5.9 f

7 6.3 Y
3 6.7 O 1 2 3 4 5 6 7 8 9 10 11
9 7

10 7.3

2.4 Graph of the Cube Root Function
Example 11: Graph the cube root function y =</x—1

Solution: As we know that cube root function is defined for all real numbers because
the cube root of any number (positive, negative or zero) is always real. Therefore, the
domain of the given cube root function is all real numbers. The range of the given
function is also the set of real numbers.
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Table values and the graph of the function are given below:

— 3 4y

X = -1

Y X 2.5

5 1.8 of L y=lx-l

4 1.7 15

3 1.6 i

2 1.4 ’ 0.5

-1 -1.3 o 2

: 6 5 43210 2 3 4 5 6
0 -1 0.5

1 0 _

: 1 /;
3 13 .
4

5

1.4 'y
1.6 v

2.5 Real Life Applications

Growth and Decay in Finance (Predicting Long-Term Stock Prices)
When something increases in quantity or size over time, it is called growth. For
example, money in a bank account earning interest (it grows larger), a population of
rabbits is increasing over months.

When something decreases in quantity or size over time, it is called decay. For
example, a radioactive substance is losing its strength over years, a cup of hot
coffee is cooling down over time.

Example 12: The value of a stock follows the exponential growth model P(f) = Pe”,

where P is the initial stock price, r is the growth rate per year and ¢ is the time in

years. Suppose a stock is currently valued at Rs. 5,000, and it is expected to grow at a
rate of 5% per year.
(1) Find the value of the stock after 10 years.
(i) After how many years will the stock double in value?
Solution: (i) The formula for the exponential growth is:
P(t) = P,e"
Given P, =5,000, r = 0.05 (5% growth rate), and ¢ = 10 years.

P(10) =5.000 €910 =5 000 €%
Using €% = 1.6487
P(10)=5,000 x 1.6487 = 8244
So, the value of the stock after 10 years is approximately Rs. 8244,
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(i1) We want to find # when the stock doubles, i.e., when P(7) = 2P. Using the
equation:
2P, =P e"
Dividing both sides by P, we have 2 = "
Taking the natural logarithm on both sides: In 2 = r¢
and t =In2/r=0.69310.05=13.86

So, the stock will double in value in approximately 13.86 years.

Example 13: The concentration of a pollutant in a lake, in parts per million (ppm),
decays over time according to the function

100

Ne+1

where ¢ is the time in days since the pollutant was introduced.

C(t)=

(1) What is the concentration of the pollutant after 4 days?

(i) After how many days will the concentration drop below 10 ppm?

Solution: (i)  The pollutant concentration function is C(¢) = , where ¢ is the

0
Ji+1
time in days.

Concentration after 4 days:
cay=—2 19 44 72ppm

NZFS N

The concentration after 4 days is about 44.72 ppm.

(11) When will the concentration drop below 10 ppm? Set C(¢) = 10:
10= 100 SVt+1=10=t+1=100=¢=99

NE+1

After 99 days, the concentration will drop below 10 ppm.

¥V EXERCISE 2.2 4

1. Find the point of intersection of the coordinate axes and the following linear
functions graphically:

(i) y=-5x+10 (i) y=2x-1
(i) y= 1 x-3 (iv) y= 3x+E
Y72 YEE
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2.

Find the point(s) of intersection of the following functions graphically:
1) f(x)=2x+5, g(x)=—x+5

1) f(x)=3x-2, g(x)=10—x
(1) f(x)=2x—-4, g(x)=3x-1

(iv) f(x)=-3x-4, g(x)=%x+3

V) f(x)=x-1, g(x)=x"—4x+3
(vi) f(x)=3x+4, g(x)=x"+2x-8
Graph the following functions:

(i) y=+Br (i) y=va+s (i) y =

(iv) y=—x+1+2 v) y=3y2x+1 (vi) y=23x-3
(vii) y=~/x"+x-2

A building’s height over time is modeled by H(#) = 100 + 207 which is in metres

and ¢ is the time in months. The height of a growing tree nearby is given by
7(f) = 50 + 10z + £.

(1) At what time will the building and tree have the same height?
(1) What will that height be?

Sketch the graphs of both functions and determine the time when the tree will
overtake the height of the building.

A radioactive substance has a half-life of 2 years. If the initial quantity is

t

7
200 grams and the exponential decay function is Q(¢) = Q (%J , then find the

remaining quantity after 6 years graphically?



Theory of Quadratic
Functions

INTRODUCTION

This unit explores methods to find the maximum and minimum values of quadratic
functions using completing the square and graphical analysis. It also covers the inverse
of quadratic functions, determining their domain and range. Additionally, students will
learn to solve absolute value quadratic equations and inequalities, as well as equations
of rational, radical and exponential forms that can be reduced to quadratic equations.
Finally, the unit demonstrates the practical applications of quadratic equations and
inequalities in solving real-world problems, providing a strong foundation for problem-
solving and analysis.

3.1 Quadratic Function
A quadratic function is a polynomial function of degree two. It is typically expressed
in the standard form:
f(x)=ax*+bx+c
where a, b and ¢ are real numbers, and a # 0.

3.1.1 Analyzing Quadratic Function by Sketching

As we know shape of the graph of a quadratic : A
function f(x) = ax* + bx + ¢ is a parabola. The v !
parabola opens upward or downward, depending on II, E

the sign of the leading coefficient a, as shown in the a>0 a<0
given figure.

The tip of the parabola, labeled as V in the diagrams above, is known as the vertex
having coordinates (%, k). The vertical line passing through the vertex serves as the
axis of symmetry for the parabola. The vertex represents a turning point, where the

graph changes direction.
e Ifa >0, then the vertex is a minimum point.
e Ifa <0, then the vertex is a maximum point.

For sketching the quadratic function, we need to find the x-intercept, y-intercept and
the vertex. For analyzing the sketch of quadratic function, we find whether the vertex
1S a minimum or a maximum point and indicate the intervals where the function is
increasing or decreasing.
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Example 1: Sketch and analyze y = —x* — 2x + 3.
Solution: y = —x? —2x+3
The y-intercept is y = —(0)> —2(0) + 3 =3
The x-intercepts are found by solving the equation:
—x*-2x+3=0 or xX*+2x-3=0
xX*+3x—x-3=0

x(x+3)-1(x+3)=0 1, 4)4“3’
(x+3)(x-1)=0 E
x+3=0,x-1=0 5
x=-3,x=1 1
Now, we find the vertex b3 >
—b 2) -4 B2 —17{) 2
"2 e 2
k=—(-1P?-2(-1)+3=-1+2+3=4 =
So, the vertex (—1, 4) is a maximum point. The function y 4" 3!

is increasing on (-0, —1) and decreasing on (-1, o)
3.1.2 Finding Maximum and Minimum Values of Quadratic

Functions by Completing Square
Completing the square is a technique used to rewrite a quadratic function in the
following vertex form:

Sx)=a(x—hy+k
b b*
Where vertex=(h, k),h =— — and k=c——
2a 4a

e Ifa> 0, the minimum value of f(x) atx= his k.

e Ifa <0, the maximum value of f(x) atx = his k.
Example 2: Find the maximum or minimum value of
f(x) = -2x*+ 4x + 3 by completing square.

Solution: f(x) ==2(*-2x)+3
f(x)==2(x*-2x+1-1)+3
Sx)=2[(x-1)*-1]+3
f(x)=-20r— 1) +2+3
f(x)==2(x—-1)*+5

Here a=-2<0

Therefore, the maximum value is 5, which occurs when x = 1.

[ (1, 5)
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Example 3: Find the maximum or minimum value of
f(x)=x"-2x-3.

Solution: Given that f(x)=x"—2x-3
Herea=1,b=-2,c=-3

__b_ =2,
2a 2(1)
and k=c_£=_3_(__2)2=_
4q 4(1)

Here a=1>0
Therefore, the minimum value of f(x) at x = 1 is —4.

3.2 Inverse of Quadratic Function

Mathematics

Aky
5
4
3
2
1
o %
T3 -2-10 4
1
=3
4
(1,-4)
=5 Minimum value
vV occurs atx = 1

Quadratic functions are typically not one-to-one over their entire domain. To find an
inverse for a quadratic function, we must restrict its domain to a portion where it is
one-to-one. Commonly, we restrict the domain to either x > & (where 4 is the x-

coordinate of the vertex) or x < /.

Example 4: Find the inverse of f(x)=x"+4x+3,x>-2. Also find its domain and

range.

Solution: f(x)=x*+4x+3 , x>-2
y=x2+4x+3
x=y*+4y+3

YV +4y+3-x=0
4% J@? -3 -x)
2(1)
)= —4+16—12+4x
2
—4+J4+4x
y=—
)= —4+21+x

2
Sl ==2+1+x

(Interchange x and y)

(Replace y with £~ (x))

(Using the quadratic formula)

The above inverse function has both a positive and a negative component. To determine

which is the inverse, we find domain and range of the given function.

Domain f = [-2, o0)
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To find range, we proceed as

Since x>-2
x> +4
4x >-8
xX>+4x >—4
> +4x+3 >—-4+3
= fix) =1
As fx) =x*+4x+3
= f) =@+2y -1

Therefore, minimum value of f{(x) is —land hence
Range f* = [-1, )
Domain f~!=[-1,) , Range f ! =[-2, )
Now, we substitute any value of x that falls within the domain. We choose the value
x=0.
FU0)= 2+/1+0=-1

SO =+2-41-0=-3

We notice only —1 lies in the range of f. Therefore, we discard negative component.

Hence [ '(x)=-2++1+x

3.3 Absolute Value F
The absolute value of x, is defined as 3 Y=
x| %x , x20 5
-x, x<0 1
. AX’ X
3.3.1 Absolute Value Quadratic N e B

Equations

To solve the absolute value quadratic equations, all answers must be substituted back
into the original equation to verify whether they are valid or not. Sometimes,
"extraneous" solutions may appear which are not valid and must be eliminated from
the final answer.
Example 5: Solve [x*—4|=5
Solution: > —4)=5

x4 =45

x*—4=5 or x*-4=-5

¥ =9 or x*=-1
x=13 or x==+-1= imaginary
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Check: For x=3 For x=-3
-d=5 | [(3)-4|=5

51 =5 5] =5

5=5 5=5

Hence solution set = {+3}

3.3.2 Absolute Value Quadratic Inequalities

Absolute value quadratic inequalities are inequalities that involve a quadratic
expression within absolute value bars. They are generally of the following form:

lax*> + bx + c| <d ,|ax* + bx +c|>d , |ax* + bx + c|<d , |ax*+ bx + c| > d

Example 6: Solve ‘xz —6x— 4‘ <3

Solution: [x* — 6x — 4| <3

3<x?—6x—-4<3

3<x*—6x—4 or x*—6x—-4<3
X—6x—4+3>0 or x*—6x—-4-3<0
x—6x—1>0 a -, X} —6x—7<0 (i1)

Here we solve x> —6x—1=0

—(=6) £ /(=6)> — 4(1)(~1)

L 20)
6+/36+4
Y= 2
6+ /40
= 2

642410
2

X =

¢ = 3410
r=3-410 540

x =-0.16 , 6.16
Hence critical numbers divide the number line into three regions.
x<-0.16 —0.16 <x<6.16

|
el
l l l l l l I
1 1 1 1 1 L
6

=2 -1 0 1 2 3 4 5
Test x =—1 in (i), we have

(-12-6(-1)-1>0 = +6>0 (True)
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Test x =0 1in (i), we have
(0% -6(0)-1>0 = -1>0 (False)
Test x =7 in (i), we have
(7P?-6(7)-1>0 = 6>0 (True)
Solution set is (—o0, —0.16) U (6.16, )
Now, we take (ii) and solve
¥ —6x-7=0
¥+x-—Tx-7=0
xx+1)=7(x+1)=0
x+1Dx-7)=0

x+1=0 , x-7=0
x=-1 , x =17
These critical numbers divide the number line into three regions.
< x<-1 < -1 <x<7 N x>17 5
I I I I I I I I I I I I I I
-4 -3 =2 -1 0 1 2 3 4 5 6 7 8 9
Testx=-2 , x=0 and x =10 in (ii), we have
(22 -6(-2)-7<0 = 9<0 (False)
(0)* - 6(0)-7<0 = —7<0 (True)
(10> - 6(10)-7<0 = 33<0 (False)
Solution set is (-1, 7)
Hence the solution set of the given absolute value quadratic inequality is
(-0, -0.16) U (6.16, )} N {(-1,7)=(-1,-0.16) U (6.16, 7)
P~ EXERCISE 3.1 4
1. Find the maximum or minimum value of the following quadratic functions by
completing square:
(i) f(x)=x"+6x+13 (i) f(x)=x"+4x
(iii) f(x)=-x"+8x+13 (iv) f(x)=—-x"-3x-5
(v) f(x)=3x"+6x-13 (vi) f(x)=-2x>—x+21

2. Find the maximum or minimum point by sketching the following quadratic

functions. Also find their domain and range:

(i) f)=x"-4x (i) f(x)=x"—5x+6
(iii) f(x)=—x"+2x-8 (iv) f(x)=x"—4x+4
v) f(x)=x"+2x-83 (vi) f(x)=6-x—x
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3.  Find the inverse of the following quadratic functions. Also find their domain and
range:
i) f(x)=x"-3, x<0 () f(x)=x"+6x+4, x<-3

(iii)) f(x)=2x"-8x+11, x>2 (iv) f(x)=3x"-2x+6, x>5
V) f(x)=2(x-3)+1, x=3 (vi) f(x)=-3(x+4)" -5, x<-4
4.  Solve the following absolute value quadratic equations and inequalities:

i [ +1=5 (i) [¢+5x+4=0 (i) [x’-6x+8=4
(iv) P —7x+2/=x"—x+1 V) [F-4<5 (i) P -3x+2>4
(vii) [ =5x+6[<x+2 (viii) [2x* —3x—5|< 4
3.4 Solution of Equations Reducible to the Quadratic
Equation

There are certain types of equations, which do not look to be of degree 2, but they can
be reduced to the quadratic equation. We shall discuss the solutions of the rational,
radical and exponential equations.

3.4.1 Rational Equations Reducible to the Quadratic Equation

A rational equation is an equation containing one or more rational expressions, where
rational expressions typically contain a variable in the denominator.

Example 7: Solve l+L:1,x7é0,x;«é—1
x x+1

Solution: l+i =1
x x+1

Multiplying both sides by x(x+1), we have
(x+D+2x=x(x+1)
x+1+2x=x"+x
3x+1=x"+x

X +x-3x-1=0

x*=2x-1=0
L T(DEJ2 AN 244
B 2(1) 2
L 2i2J§: 2i§ﬁzliﬁ

Hence, Solution Set = {lir \/5 }
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3.4.2 Radical Equations Reducible to the Quadratic Equation
Equations involving radical expressions of the variable are called radical equations. To
solve a radical equation, we first obtain an equation free from radicals. Every solution
of radical equation is also a solution of the radical-free equation but the new equation
has solutions that are not solutions of the original radical equation. Such extra solutions
(roots) are called extraneous roots.

Example 8: Solve \/x+ 8 +\/x+3 = \/l2x+ 13

Solution: vx+8++/x+3=+/12x+13
Squaring both sides, we get

x+8+x+3+2Vx+8Vx+3 =12x+13
2x+8yYx+3 =10x+2
=  J(x+8)(x+3) =5x+1

Squaring again, we have
X2+ 11x+24=25x*+10x + 1
= 24x? —x-23=0
= (4x+23)x-1)=0

23
x=-— or x=1
24

. 23 . .
On checking we find that —2—;7; is an extraneous root. Hence solution set = {1}

3.5 Real World Problems of Quadratic Equations and

Inequalities
We shall now proceed to solve the problems which, when expressed symbolically, lead
to quadratic equations in one or two variables.
In order to solve such problems, we must:
1. Suppose the unknown quantities to be x or y etc.
ii.  Translate the problem into symbols and form the equations satisfying the given
conditions.
The method of solving the problems will be illustrated through the following examples:
Example 9: The length of a room is 3 metres greater than its breadth. If the area of the
room is 180 square metres, find length and the breadth of the room.
Solution: Let the breadth of room = x metres
and the length of room = (x + 3) metres
Area of the room = x(x + 3) square metres
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By the given condition, we have
x(x+3) =180 ...(1)
= x*+3x-180=0 ...(11)
= (x+15x-12)=0
x=—15 or x=12
As breadth cannot be negative so x =—15 is not admissible.
Whenx =12, wegetx+3=12+3=15

Hence breadth of the room = 12 metres and length of the room = 15 metres.
Example 10: A company manufactures laptops and its weekly profit function (in

thousands of dollars) is P(x)=—x"+2x+3, where x is the number of laptops

produced (in hundreds). Find the range of production levels where the company
makes at least $4,000 profit.
Solution: Here P(x)>4

—x*+2x+3>4
~xX*+2x+3-42>0
—x*+2x-1>0
x*=2x+1<0
(x=1)’<0
This only holds true when (x—1)>=0 = x =1

The company makes exactly $4,000 profit when 100 laptops are produced (since x =1
means 100 laptops). There is no production level where profit is more than $4,000.

P~ EXERCISE 3.2 4

1. Solve the following equations:

1  4x X x+1 5
i) —+—=1,x#0 i) —+——=—;x#-10
0 3x 6 (@) x+1 X 2
(1i1) ! + 2 = 7 cx#=—1,-2,-5

x+1 x+2 x+5

a b 11 x+1 x-1
v + =a+b,x#—,— v) —+——=2,x#1,x#-1
) ax—1 bx—1 ab ® x—1 x+1 7 7
(vi) 3x?+15x—24x*+5x+1=2 (vil) V2x+8++/x+5=7

(viii) V3x+4 =2+2x—4 (ix) Vx+7+~x+2=+6x+13
x) x+5-Jx-3=2
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A farmer bought some sheep for Rs. 9000. If he had paid Rs. 100 less for each,
he would have got 3 sheep more for the same money. How many sheep did he
buy, when the rate in each case is uniform?

A man sold his stock of eggs for Rs. 2400. If he had 2 dozen more, he would have
got the same money by selling the whole for Rs. 0.50 per dozen cheaper. How
many dozen eggs did he sell?

A cyclist travelled 48 km at a uniform speed. If he had travelled 2 km/hour slower,
he would have taken 2 hours more to perform the journey. How long did he take
to cover 48 km?

To do a piece of work, Abdullah takes 10 days more than Abdul Hadi. Together
they finish the work in 12 days. How long would Abdul Hadi take to finish it
alone?

The braking distance (in metres) of a car is modeled by:
d(s)=0.02s>+0.1s, where s is the speed of car in km/h

If the maximum safe braking distance is 50 metres, find the range of speed where
braking is safe.
A rocket follows the height function 4(¢)=—5t>+20¢+30, where A(?) is the

height in metres and 7 is the time in seconds. Find the time interval during which
the rocket is at least 40 metres above the ground.



Matrices & Determinants

INTRODUCTION

This unit introduces the fundamental concepts and operations of matrices, equipping
students with the skills to perform matrix addition, subtraction and multiplication
involving both real and complex entries. It explores the essential properties of
determinants and provides techniques for evaluating the determinant of a 3x3 matrix
using cofactors and determinant properties. Students will learn to apply row
operations to determine the inverse and rank of matrices, as well as distinguish
between consistent and inconsistent systems of linear equations through practical
examples. The unit further explores into solving systems of linear equations, both
homogeneous and non-homogeneous, using advanced methods such as matrix
inversion, Cramer’s Rule and Gaussian elimination. Emphasis is placed on the real-
world applications of matrices in diverse fields such as graphic design, cryptography,
data encryption, geometric transformations and highlighting the importance and
versatility of matrix algebra in solving complex, practical problems.

4.1 Matrix

While solving linear systems of equations, a new notation was introduced to reduce
the amount of writing. For this new notation the word matrix was first used by the
English mathematician James Sylvester (1814 — 1897). Arthur Cayley (1821 — 1895)
developed the theory of matrices and used them in the linear transformations. Now-a-
days, matrices are used in high speed computers and also in other various disciplines.
The concept of determinants was used by Chinese and Japanese mathematicians but
the Japanese mathematician Seki Kowa (1642—-1708) and the German Mathematician
Gottfried Wilhelm Leibniz (1646-1716) are credited for the invention of
determinants. G. Cramer (1704-1752) employed the determinants successfully for
solving the systems of linear equations.

A rectangular array of numbers enclosed by a pair of bracket is called a matrix such as:

230

2 -1 3 | 1 -14 )

{—5 4 7} L R )
41 -1

The horizontal lines of numbers are called rows and the vertical lines of numbers are
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called columns. The numbers used in rows or columns are said to be the entries or
elements of the matrix.

The matrix in (i) has two rows and three columns while the matrix in (ii) has four
rows and three columns. Note that the number of the elements of the matrix in (ii) is
4x 3 =12. Now the general definition of a matrix is:

Generally, a bracketed rectangular array of m-n elements aij(l, 2,3, ..., m;
j=1,2,3, ..., n), arranged in m rows and »n columns such as:

4y 4y 4 a,,

ay 4y a4y ay, (iii)

aml amZ am3 amn

is called an m by n matrix (written as mx n matrix), where mx nis called the order
of the matrix in (iii). The matrices are usually represented by the capital letters such
as 4, B, C, X, Y, etc., and small letters such as a, b, ¢, [, m, n, or a,,,a,,,a,, ..., etc.,

are used to indicate the entries of the matrices.

Let the matrix in (iii) be denoted by A. The ith row and the jth column of A4 are
indicated in the following tabular representation of 4.

Jjth column
Ay G G4 4y a,,
y Gy Gy Oy, a,,
a3 Gy iz 00 Oy, a,,
A= |+ : : (iv)
ithrow —| @, a, a5 = a - a,
_aml a,, 4d,; ° amj e a,, ]

The elements of the ith row of 4 are a;, a,, a; ...q,... a, while the elements of the

Jth column of 4 are a,;, a,;, a,;...q,;..a, . Wenote that g, is the element of the ith

J J i

row and jth column of 4. The double subscripts are useful to name the elements of

-1 3
the matrices. For example, the element 7 is at a,; position in the matrix { 5 4 7}.

For convenience, we shall write the matrix 4 as:
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A= [aij]m c,ord= [al.j], fori=1,2,3,...,mj=1,2 3, ..., n, where a; is the

element of the ith row and jth column of 4. O L matrix A s called real

The elements (entries) of matrices need not matrix if all of its elements are

always be numbers but in the study of

' real.
matrices, we shall take the elements of the

matrices from R or from C.
Row Matrix or Row vector: A matrix, which has only one row, i.e., 1xn matrix of

the form [a” a, a5 .. am] is said to be a row matrix or a row vector.

Column Matrix or Column Vector: A matrix which has only one column i.e.,

alj

azj
an mx 1 matrix of the form | a3, |is said to be a column matrix or a column vector.

ap
2

For example [1 —1 3 4] is a row matrix having 4 columns and |—1|is a column
3

matrix having 3 rows.

Rectangular Matrix: If m # n, then the matrix is called a rectangular matrix of
order mxn, that is, the matrix in which the number of rows is not equal to the
number of columns, is said to be a rectangular matrix. For example;

2 -3 0
2 31 1 2 4 ,
and are rectangular matrices of orders 2x3 and 4x3
-1 0 4 3 -15
0 1 2
respectively.

Square Matrix: If m = n, then the matrix of order mx n is said to be a square matrix
of order n or m. i.e., the matrix which has the same number of rows and columns is

1 1 2
25
called a square matrix. For example: [0],{ { 6} and |2 —1 8|are square
- 35 4

matrices of orders 1, 2 and 3 respectively.
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Let 4 = [a;] be a square matrix of order n, then the entries «,,, a,,, a;;, ..., a,, form

the principal diagonal for the matrix 4 and the entries a,,, a,, |, a5, 5, ..., @ a

n-12% “nl

form the secondary diagonal for the matrix 4. For example, in the matrix

a;; dpp diz 4y

Ay Gy Gy Gy . . .
, the entries of the principal diagonal are a,,,4,,,a,;,a,, and the
a3 L8353, O3,
Ay Ay Gy dy
entries of the secondary diagonal are a,,,a,;,a,,,4,, .
The principal diagonal of a square matrix is also called the leading diagonal or main
diagonal of the matrix.
Diagonal Matrix: Let 4 = [a;;] be a square matrix of order 7.
If a;; = 0 for all i# jand at least one a; #0 for i =, that is, some elements of the
principal diagonal of 4 may be zero but not all, then the matrix A4 is called a diagonal
matrix. The matrices

0 000
1 00
01 00 ) )
[7],l0 2 0]and 00 2 are diagonal matrices.
0 0 5
0 0 0 4

Scalar Matrix: Let 4 = [a;;] be a square matrix of order n.
If a;; = 0for all i # jand a;; = k (some non-zero scalar) for all i = j, then the matrix

A is called a scalar matrix of order n. For example:

a 0 0 3000
70 0 a 0| (@a#0)and 0300 are scalar matrices of order 2, 3 and 4
07/ 0030 ’
0 0 a 0003
respectively.

Unit Matrix or Identity Matrix: Let 4 =[a;] be a square matrix of order n. If ¢; =0
forall i # j and a;; = 1 for all i = j, then the matrix 4 is called a unit matrix or identity

matrix of order n. We denote such a matrix by 7, or simply / and it is of the form:

100 -0
010 --0
L0010
000 -1
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1 00
The identity matrix of order 3 is denoted by /3, that is, /3 = {0 1 0]
0 01

Null Matrix or Zero Matrix: A square or rectangular matrix whose each element is
zero, is called a null or zero matrix. An mx n matrix with all its elements equal to
zero, is denoted by O, . Null matrices may be of any order. Here are some

examples:

0770 0 0 O
0 0 070 O O may be used to denote
0]’[0 0 0]’ 00 ollo o 0,10 0 00 null matrix of any order
0110 0 0 O

if there is no confusion.

are null matrices of order 1, 1 x 3,2 x 3,2 x 2,3 x 1, 3 x 4 respectively.

Equal Matrices: Two matrices of the same order are said to be equal if they have
same order and their corresponding entries are equal. For example, 4 = [4,],, ., and

B= [bl.].]m ., are equal, i.e., 4 = B iff a; :bl.j fori=1,2,3,...m, j=1,2,3,...,n In
other words, 4 and B represent the same matrix.

Transpose of a Matrix: If 4 is a matrix of order mxn then an nx m matrix
obtained by interchanging the rows and columns of A4, is called the transpose of 4. It

is denoted by 4'. Let 4=[a i 1en then the transpose of 4 is defined as:

mxn %
t ’ ! P .
A" =la;],., where a;=a, fori=1,2,3,...,nand j=1,2,3,....,m

bll blZ b13 b14
For example, if B=[b;],, =|b,, b,, by by |,then
b3l b32 b33 b34

B’ =[b}],; where b= b, fori=1,2,3,4andj=1,2,31ie,

bl’1 bl’2 bl’3 bl 1 b21 b31
B = by, by, by _ b, by by
by, by, by by by by
b:I 1 b:IZ b:B bl 4 b24 b34

Note that the 2™ row of B has the same entries respectively as the 2™ column of
B! and the 3" row of B’ has the same entries respectively as the 3™ column of B etc.
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4.2 Matrix Operations

Matrix operations involve various techniques and procedures applied to matrices.
These operations are foundational in linear algebra and have applications in
numerous fields such as computer graphics, physics, statistics, etc. Here are some key
matrix operations:

4.2.1 Addition of Matrices

Two matrices are conformable for addition if they are of the same order.

The sum 4 + B of two mx n, matrices A:[aij} andB:[bij] is the mx n matrix

C= [cy] formed by adding the corresponding entries of 4 and B together. In
symbols, we write as C = 4 + B, that is:
[cg]:[%+by] where ¢, =a, +sz fori=1,2,3,...,m; j=1,2,3,..., n
4.2.2 Subtraction of Matrices
If 4=[a;]and B =[b,]are matrices of order mx n, then we define subtraction of B

from A as:
A—B =4+ (-B)
= [a;]+[-b,] =[a; + (=b)]=[a, —b;1 for i=1,2,3,...,m;j=1,2,3,...,n
Thus, the matrix 4 — B is formed by subtracting each entry of B from the
corresponding entry of A.

1 0 -1 2 2 -1 3 1
Examplel: If4=|3 1 2 5|and B=|1 3 -1 4 |,then show that
0 -2 1 6 31 2 -1

(A+B) =A"+ B’
Solution:

A+B=13 1 2 +1 3 -1 4 |=3+1 143 2+(-1) 5+4

1 0 -1 2 2 -1 3 1 1+2 0+(-1) -1+43 2+1
5
0 -2 1 6 31 2 -1 0+3 -2+1 1+2  6+(-1)

3 -1 2 3
_|4 4 19}
3 2135
34 3
and (4+B) =3 T ‘31 (i)
3 9 5
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Taking transpose of 4 and B, we have

13 0 2 1 3
c o1 -2 A T
A=, (|amdB =5 5
25 6 14 -1
13 012 1 373 4 3
T Y ST D S B B R y
= A +B' = = (i1)
o2 13 g 2|72 03
205 6] |1 4 —1] |3 9

From (i) and (ii), we have (4+ B) = 4' + B’
4.2.3 Scalar Multiplication
If A=[a;]is mx n matrix and & is a real or complex number, then the product of k£ and
A, denoted by k4, is the matrix formed by multiplying each entry of 4 by £, that is
kA = [ka, ]
Obviously, order of k4 is mx n. If n is a positive integer, then
4.2.4 Multiplication of two Matrices At Ax Az tontems =nd.
Two matrices 4 and B are said to be conformable for the product 4B if the number of
columns of 4 is equal to the number of rows of B.
Let 4=[a;] be a 2x3 matrix and B = [b;] be a 3 x 2 matrix, then the product 4B is
defined to be the 2x 2 matrix C whose element c, is the sum of products of the

corresponding elements of the ith row of 4 with elements of jth column of B. For
example, the element c,, of C is shown in the figure (A), that is

1" column of B
bll

bZI
. by
2 row OfA a, dy dy

Figure (A)
¢y = a, b, + ayb, +a,, b, . Thus

b, b
1 O

AB = ay 4p 4y b b |= ayby, +a,b, +ayby,  ay,b, +a,b, + a3y,
1, b1 Dy

b b ay by, +ayby, +ayb,  a,b,+ayb, +ayb;,
51 Oxp
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b, b,
Similarly BA=|b, b, ||™ @2 %
1milarly B R
2 Gy Ay
| by, by,
b,a, +b,a, bya,+bya, ba;+b,ay,

=|bya,, +bya, Dbya,+byay, bya;+bya,, (i1)

| byay, +bya, byay, +by,ay,  bya; +bya,,

From (i) and (ii), 4B and BA are calculated their orders are 2x2and 3x3
respectively.

Notel. In general, AB # BA

Note 2. If the product 4B is defined, then the order of the product can be illustrated as
given below:

Order of 4 mxn
Order of B nx p
Order of 4B C mx p
2 -1 3
Example2: If 4=|1 2 -3|andB=|-1 -4 6|, thencompute 4°B.
1 2 -2 0 -5 5

2 -1 0{2 -1 O

Solution: AA=4-4=|1 2 =3||1 2 =3

1 2 =201 2 =2
4-1+40 —-2-2+0 0+3+0 3 -4 3
2+2-3 —-1+4-6 0-6+6|=|1 -3 0
2+2-2 —-14+4-4 0-6+4 2 -1 =2

3 -4 30[2 -2 3
A’B=|1 -3 0 ||-1 -4 6
2 -1 =20 -5 5
[(6+4+0 —6+16—15 9-24+15 10 -5 0
=[2+3+0 -2+12+0 3-18+0 |=|5 10 -15
| 4+1+0 —-4+4+10 6-6-10 5 10 -10
Powers of square matrices are defined as:

A =Ax A, A3=AxAxA4
A=A x A %X A x --- to n factors.
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4.3 Properties of Matrix Addition, Scalar Multiplication and
Matrix Multiplication

If A4, B and C are conformable for the indicated sum or product of matrices and ¢ and
d are scalars, then following properties are true:

(i) Commutative property w.r.t. addition: 4 + B=B+ 4

(ii) Associative property w.r.t. addition: (4+ B)+C=A4A+(B+C)

(iii) Associative property of scalar multiplication: (cd)4 = c¢(dA4)

O is null matrix and J

(iv) Existence of additive identity: 4 + O = O+ 4=4 ( . .
Ais a square matrix

(v) Existence of multiplicative identity: /4 = A/ =A (I is unit/identity matrix)
(vi) Distributive property w.r.t scalar multiplication:
(@) c(4+B)=cA+cB (b) (c+td)A=cA+dA
(vii) Associative property w.r.t. multiplication: 4(BC) = (4B)C
(viii) Left distributive property: A(B+C)=A4B + AC
(ix) Right distributive property: (4 + B)C=AC+ BC
(x) c(4B)=(cA)B=A(cB)

2 01 1 -1 O
Example3: Find4BandBAif A=|1 4 2|and B=(2 3 -1
3 06 1 -2 3
2 0 1|11 -1 0
Solution: 4B=|1 4 2|2 3 -1
3 0 6|1 -2 3

[2x140x24+1x1 2x(=D)+0x3+1x(=2) 2x0+0x(=1)+1x3
= Ix14+4x2+2x1 Ix(-1)+4x3+2x(-2) Ix0+4x(-1)+2x3
|3x1+0x2+6x1 3x(=1)+0x3+6x(-2) 3x0+0x(-=1)+6x3

(3 -4 3
=11 7 2 (i)
9 —15 18

I -1 0]|2
BA=2 3 -1]|1
3

0
4
1 -2 3 0

AN N =
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Ix2+(-Dx14+0x3 1x0+(-)x4+0x0 IxI+(-1)x2+0x6
=|2x243x1+(-1)x3 2x0+3x4+(-D)x0 2x1+3x2+(-1)x6
Ix24+(-2)x14+3x3 1x0+(-2)x4+3x0 Ix1+(-2)x2+3%x6

bo-4 -l
=4 122 (ii) Matrix multiplication is not
9 -8 15 commutative in general.

Thus, from (i) and (ii), AB # BA

P~ EXERCISE 4.1 4

1. If 4=[q;],,, then show that

() LA=4 (i) Al,=4
0 -1 2 2 1 -1 1 0 -2

2. IfAd=|3 2 1|, B=|1 2 4| and C=|-1 5 0|, thenfind
1 0 4 12 1 3 4 -1

() A-B (i) B-C (i) A-B)-C (iv) A-(B-C)

3. If 4 and B are square matrices of the same order, then explain why in general:
(i) (A+B)’# A*+24B+ B’ (i) (A-B)* # A*-24B+ B’
(iii) (A+B)(A-B)# A - B’

12 3 0
4. IfA=[1 0 2 -2/, then find AA”,A’Aand(A’)[.
3 5 3 -]

5. Solve the following matrix equations for X:

. . 2 3 =2 2 3 1
(i) 2X-34=8B 1fA={ | 5} and B:{5 }

-1 4 -1
2 0 1
(i) A*-54+41-X=0 if A=|2 1
1 -1 0

4.4 Determinants
The determinants of square matrices of order n>3, can be written by following the
pattern. For example, ifn =3
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ay 4y 4 a, 4y Gy
A=|a, a, a, | then thedeterminantofd =|d|=|a, a,, a,
a3 Gy Gy ay 43 Ay
Now our aim is to compute the determinants of matrices of various orders.
4.4.1 Minor and Cofactor of an Element of a Matrix or its Determinant

Minor of an Element: Let us consider a square matrix 4 of order n, then the minor

of an element a,

and the jth column of A(or|A|) .

denoted by M is the determinant formed by deleting the ith row

For example, consider a square matrix 4 of order 3, A=|a,, a,, a,y
a3 4y 4y

To find the minor of the element a.,, delete the first row and second column of 4

122
]
]
R R
: thatis M, ="
y Gy Gy |, thalls My, =

Ay dy Ay

Q3 Oy

Cofactor of an Element: The cofactor of an element a;; of a square matrix 4 denoted
by 4;; is defined by 4, = (-1)"' M,

a, a
For example, 4, =(-1)"*M,, = (-1)’ o

ay Ay
a

31 O3 ay Ay

4.4.2 Determinant of a Square Matrix of Order n =3
ay  dy G
If 4 1s a matrix of order 3, thatis, A=|a, a,, a, |,then:
a3 Gy Gy
|4|=a,4,+a,4,+a,4, fori=1,2,3
or |Al=a,,4;+a,4,,+ay;4; for j=1,2,3

For example, for i=1, j=1andj =2, we have

|A| = ap A +ay A, + a4, (1)
or |A| = ay Ay + ay Ay + ay 4 (i1)
or [A|= ap A, +ay Ay, + ay 4, (ii1)

(iii) can be written as: |4|=a,,(~=1)"* M, + a, (-1)*"> M, + a5, (-1)’* M,
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i.e., A| =-a,M,+a,,M,,—a,,M,, (iv)

Similarly (i) can be written as |4| = a, M, —a,,M,, + a,,M , v)

Putting the values of M,,,M,, and M, in (v), we obtain

ay Ay ay Ao ay dp
|A| = ay —ap ta
asz, 4z as  dy az a4y
or |A| =0, (ay, 853 — Ay3055) — Ay (A, Q55 — Ay305,) + 413 (Ay A3y — Ay a,) (vi)
or |A| = 0,105,055+ Q05305 + 0130505, — A)1A5305, — 01,0505 — 30,05, (vii)

Equation (vii) is the required expansion of determinant of square matrix of order 3.

1 -2 3
Example 4: Evaluate the determinantif 4={-2 3 1
4 -3 2
1 -2 3
Solution: |4|=|-2 3 1
4 -3 2
using |A|=a11M” —a,M,+a,M,; ,we get

[4]=1

301 21 2 3
23 2“(‘2)‘4 2‘*3‘4 —3‘
=1[6—-1(=3)]+2[(-2)(2) - (D) (D] +3[(-2)(-3)-12]
=(6+3)+2(-4-4)+3(6-12) =9-16-18 =25

1 -2 3
Example 5: Find the cofactors 4,,, 4,, and 4,,0f A=|—2 3 1 |and find |4|.
4 -3 2
Solution: We first find M ,,M,, and M ,,,
Mu:‘—j ;‘2_4_4 __3 ;M”:‘zlt ;‘=2—12 ~_10
and M,, = ‘ 3‘:1—(—6) =7
-2 1

Thus A, =DM, =1)(8)=8; A4, =(-1)*"M,=1(-10)=-10
Ay = )My =(1)(T) =7
and 4| =a, A, +ayAdy, +ay, Ay, = (=2)8+3(=10) + (=3)(=7)
=-16-30+21=-25
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4.4.3 Properties of Determinants

i.  For a square matrix 4, |4| =|4'|
ii. If in a square matrix 4, two rows or two columns are interchanged, the

determinant of the resulting matrix is —|4|.
iii. Ifa square matrix 4 has two identical rows or two identical columns, then |4|=0.
iv. If all the entries of a row (or a column) of a square matrix 4 are zero, then |4| = 0.
v. If the entries of a row (or a column) in a square matrix 4 are multiplied by a
number k € R, then the determinant of the resulting matrix is k|4|.

vi. If each entry of a row (or a column) of a square matrix consists of two terms,
then its determinant can be written as the sum of two determinants, i.e., if

a,+b, a, a;
B =|a,+b, a, a,]|,then
| 43, F by a, as;

a,+b, a, a; a, a, as| |b, a, a;

Bl = |ay +by  ay, ay|=|ay ay ay|lt+|b, ay ay

a, +by  a;,  as; ay Ay, Ayl |by ay,  asg
a,+b, a, a; a, a, a3 |b, a, a;
ay +by ay ay|=|ay ay aylt|b, ay ay,
ay, +by  a;, as; ay, Ay, ay| |by oay,  asg

vii. If any row (column) of a determinant is multiplied by a non-zero number k£ and
the result is added to the corresponding entries of another row (column), the
value of the determinant does not change.

viii. If a matrix is in triangular form, then the value of its determinant is the product

of the entries on its main diagonal.

We shall define triangular matrices on following pages

X a+x b+c

Example 6: Without expansion, show that [x b+x c+a|=0
X c+x a+b
Solution: Adding the entries of C; to the corresponding entries of C,.
X a+b+c+x b+c
=|x a+b+c+x c+a
x a+b+c+x a+b
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1 1 b+ec

by taki fromC, and(a+b+c+
=x(a+b+c+x)l 1 c+a y taking x from C, and(a c+x)
common from C,
1 1 a+b
=x(a+b+c+x)-0 ¢ C and C, are identical)

=0
4.5 Adjoint and Inverse of a Square Matrix
ay  dy G 4, A, Ay

Let A=|a, a, a, |,thenthe matrix of co-factorsof 4= |4, A4, A4, |,

a; 4y Ay Ay A, Ay
4, 4, 4
andadj 4= |4, 4, A4,
4y Ay A

Inverse of a Square Matrix of Order n > 3: Let 4 be a non singular (|4| # 0) square
matrix of order n. If there exists a matrix B such that AB = B4 =1, then B is called

the multiplicative inverse of 4 and is denoted by A~'. It is obvious that the order of
A'is nxn.
Thus, AA™! = I, and A4 = I.

If 4 is non singular matrix then

A = iadj A
|4
1 0 2
Example 7: Find 47'if 4={0 2 1
1 -1 1
Solution: We first find the cofactor of the elements of 4.
1+1 2 1 1+2 O 1
4, =1 =1.2+D)=3, A4,=(-1 =-DEDH=1
-1 1 1 1
1+3 O 2 2+1 O 2
A =D TI=10-2 =2 A, =D T=D0+2)=-2

1
Azz = (_1)2+2 1

2 23
1‘=1.(1—2)=—1, 4=

bO D(=1-0)=1
= EDE-0=
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2
Ay = (_1)3+1 |

1
. ‘=(—1)<1—0)=—1

0 21 0-4)=—4 =(-1)’°*®
5 q|THO=H=4 4 =D

Ay = (= 1)3+3

! 0—1@ 0)=2
0 2 B
(4, A, A, 3 1 =2
Thus (4] =| 4y Ay Ay |=|—2 -1 1
A, A, A [-4 -1 2

3 -2 -4

and adjAd=[4],;=| 1 -1 -1 (- A=A, fori,j=1,2,3)
2 1 2

Since |A|=a,, 4, +a, A4, + a4,

=1(3)+0(1) + 2(-2)
=3+0-4=-1
3 2 4] [-3 2 4
So <[UTia®A=j% 1 -1 -1 ={-1 1 1
-2 1 2] [2 -1 =2

P~ EXERCISE 4.2 4

1. Evaluate the following determinants:

1 -2 -4 5 2 3 1 2 3
(1) 3 -1 3 @) |3 10 -1 @) -1 3 5
-2 3 2 -2 1 =2 -2
a+b a-b a 1 20 -2 2x x X
(iv) a a+b a-b v) |-1 -1 -3 vi) |y 2y y
a-b a a+b 2 4 -1 z z 2z
2. Without expansion show that:
7 8 9 5 6 -1 -a 0 b
1 |5 6 7=0 i) |2 2 0[=0 @) |0 a -—c
2 3 4 2 -8 10 c —-b 0
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[ m+n 1

@iv) |m n+l =0

n l+m 1

bec a da*| |1 o
ca b b=l b’

2 2
ab ¢ c¢| |1 ¢

(ix)

3. Show that:

3 50 3
1 |5 25 10[]=25]1
7 25 1 7

[u—

X yz
(iii) |1

1 z x |l z 2°
y -1 x
V) |x y 0o=x’+)’
I x y
a b c
(vii)

a+b b+c c+a

1 0
1 2
5 1

2
1 x x

y zx|=[1 y y2

<&>

2 1
v) 2 3
35

Mathematics

1 p° P
3x a
ox|=0 i) I ¢ L|=0
15x P
1 r# —
pq
vz zx Xy
(viil)) |x y z|=0
11
X y z
2a a+b a+c
(x) 2b 2b b+c|=0
2¢ b+c 2¢
a+b a a
(i1) a a+b a |=b’°(Ba+b)
a a a+b
m+n / /
(iv) m n+l m |=4lmn
n n Il+m
rcosd 1 —sin¥
(vi) 0 1 0 |=r
rsin@ 0 cos@

b+c c+a a+bl=a’+b’+c*—3abc
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a+A a a
(viii)] b  b+A b |=A%(a+b+c+ )
c c c+A
1 x x°
(ix) [ ¥y y|=(x=-»(y-2)(z-x)
1 z 77
y+z z+x x+y
x) | x y z |=(x+y+z2)(x—y)(y-z)(z—x)
x’ N z
1 2 -3 -5 -2 5
4. IfA=|0 -5 0 |and B=|{-3 -1 4|, then find:
-2 =2 7 -2 -1 2
(1) A;,4,;, A4, and |A| (1) B,,,B,,,B;; and |B|
5. Find values of x if:
3 1 «x I x-1 3 I 11
1 -1 -3 —4/=-30 (i1) -1 x+1 2(=0 (i) 2 x 2|=0
x 1 0 2 -3 x 3 6 x
x 2 2
6. Showthat: 2 x 2|=(x+4)(x-2)".
2 2 x
: . . -3 2 -1 . >
7. Find |44 | and |4 4|if: (i) A{z 1 3} (i) A=|2 2
1 3

If 4 is a square matrix of order 3, then show that |[k4|=k’|4].
9.  Find the values of A if 4 and B are singular.

4 2 3 -2 4 5
A=|7 A1 6], B=|1 -2 1
2 3 1 2 A 0
1 2 1
10. Find the inverse of A=|-5 0 4 |and show that A’lAzl3
5 40
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11. Verify that (4B)" = B' A" if:

1 1 1 2
. 1 -1 2 . 1 -3
(1)A= and B=|-3 -2| (i) A4=|1 4|and B=
0 -3 1 =2 1
0 1 2 1

4.6 Elementary Row Operations on a Matrix
Usually, a given system of linear equations is reduced to a simple equivalent system
by applying elementary operations which are stated as below:
(1) Interchanging two equations.
(i) Multiplying an equation by a non-zero number.
(iii) Adding a multiple of one equation to another equation.
Corresponding to these three elementary operations, the following elementary row
operations are applied to matrices to obtain equivalent matrices.
(1) Interchanging two rows
(i1)) Multiplying a row by a non-zero number
(iii) Adding a multiple of one row to another row.
WU H Matrices 4 and B are equivalent if B can be obtained by applying in turn a finite number of
row operations on A.
Notations that are used to represent row operations for I to III are given below:
Interchanging R and R, is expressed as R, <> R,.

k times R, is denoted by kR, — R/
Adding k times R; to R;is expressed as R, + kR, — R;
(R is the new row obtained after applying the row operation).

For equivalent matrices A and B, we write 4 R B.
IfA RBthenB R A
Upper Triangular Matrix: A square matrix 4 =[a,]is called an upper triangular

matrix if all elements below the principal diagonal are zero, that is,
a,=0forall i>j

Lower Triangular Matrix: A square matrix 4=[a,]is said to be lower triangular

matrix if all elements above the principal diagonal are zero, that is,
a; =0forall i< j

Triangular Matrix: A square matrix 4 is named as triangular matrix whether it is
upper triangular or lower triangular. For example, the matrices
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0
0 . . .
s are triangular matrices of order 3 and 4 respectively.
3

S O =
S = N
— N O

3
4 | and
6

— o O O

-1 2
The first matrix is upper triangular while the

second is lower triangular. Diagonal matrices are both upper
4.7 FEchelon and Reduced triangular and lower triangular.

Echelon Forms of Matrices
In any non-zero row of a matrix, the first non-zero entry is called the leading entry of
that row.
Echelon Form of a Matrix
An mx nmatrix 4 is called in echelon form if:
(1) The number of zeros before the leading entry is greater than the number zeros in
the preceding row.
(i) Every non-zero row in 4 precedes every zero row (if any).
(ii1) The first non-zero entry (or leading entry) in each row is 1.

01 -2 4 1 2 3 4
The matrices |0 0 1 2|and [0 O 1 2] arein echelon form
0 0 0 O 00 0 1

Reduced Echelon Form of a Matrix: An mx nmatrix 4 is said to be in reduced
(row) echelon form if the first non-zero entry (or leading entry) in R, lies in C,, then

all other entries of C ; are zero.

01 0 4 1 200
2land |0 O 1 O ]arein (row) reduced echelon form.
0 0 01

The matrices [0 0 1
0 0 0
2
Example 8: Reduce | 1 3] to (row) echelon and reduced (row) echelon
3
form.
2 3 -1 9 1 -1 2 -3
Solution: |1 -1 2 -3|, R~R|2 3 -1 9
31 3 2 31 3 2
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1 -1 2 -3 1 -1 2 =3
Rlo 5 —5 15| BYRA+EDR R Rig | 1 3|1, o
0 4 -3 11| MRFERoR o, 5oy S
1 -1 2 -3 1 0 1 O
Rlo 1 -1 3| R+(4R, >R B0 1 -1 3|RrR+1R >R
o 0 1 -1 0 0 1 -1
10 0 1
B 01 0 2 ByR1+(—1)R3—>R{
0 0 B andR, +1.R, > R,
1 -1 2 =3 1 0 0 1
Thus|0 1 -1 3 | and |O 1 0O 2 |are (row) echelon and reduced (row)
0 0 1 -1 0 0 1 -1

echelon forms of the given matrix respectively.
Inverse of a Matrix: Let 4 be a non-singular matrix. If the application of elementary

row operations on A:/ in succession reduces A4 to 7, then the resulting matrix is 7: 4" .

2 5 -1
Example 9: Find the inverse of the matrix A=|3 4 2
1 2 =2
2 5 -1
Solution:| g _13 4 2|=2(-8-4)—5(-6-2)—1(6-4) = —24+40-2=40-26= 14
1 2 2
As |A| # 0, so 4 is non-singular.
5 -1 : 100
Appending 7, on the right of the matrix 4, wehave |3 4 2 : 0 1 0
1 2 -2:0 01
Interchanging R, and R, we get,
1 2 -2:0 01 1 2 -2 :0 0 1
34 2 501 0Rj02 8 101 3BRIIRORK
25 15100 [0 1 3 i1 0 —2TEIRR
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By —%Rz — R, we get

1 2 -2 0O o0 1 1 0 6 0 1 -2
0 1 —4 0 LIS Rio 1 -4 0 L3 By R, +(-1)R, > R,
22 2 2 |andR +(2)R, >R
0 1 3 1 0 -2 00 7 ) 1_ _l
L 2 2 ]
By — R, — R,, we have
I 6 4 ]
1 0 6 0 1 -2 1 00 -—— = 1
7 7
01 -4 0 _L i R 01 0 4 3 1 By R +(-6)R, > R,
2 2 7 ﬁ 7 andR, +4R, > R,
1 1 1 1 | 1
0 0 1 — = —— 0 0 1 - -
L 7 14 21 | 7 14 2 |
64
7 7
Thus, the inverse of 4 is ﬂ — i - l
7 14 2
i1 1
7 14 2

Rank of a Matrix: Let 4 be a non-zero matrix. If 7 is the number of non-zero rows
when it is reduced to the echelon form, then 7 is called the rank of the matrix A.

1 -1 2 3
Example 10: Find the rank of the matrix |2 0 7 -7
3 1 12 -11
. 1 -1 2 -3 R1 -1 2 -3 ByR, +(-2)R - R
Solution: |2 0 7 -7 |&j0 2 3 -1 iR 3R s R
301 12 <11 [0 4 6 —|MRHB)ROR
1 -1 2 -3 1 -1 2 -3
3001 1 , 3001 ,
Rlo 1 S S [BY SRR, Rlp 1 S 5 |BYRHCHR SR,
0 4 6 -2 0 0 0 0

As the number of non-zero rows is 2 when the given matrix is reduced to echelon
form, therefore, the rank of the given matrix is 2.




Unit o Matrices & Determinants <> Mathematics

4.8 System of Non-Homogeneous Linear Equations

Three linear equations in three variables such as:

ax+by+cz =d,

a,x+by+c,z =d, (1)

ax+by+cz =d,
is called a system of non-homogeneous linear equations in the three variables x, y and
z, if constant terms d,,d, and d, are not all zero.
Consistent: A system of linear equations is said to be consistent if the system has a
unique solution or it has infinitely many solutions.
Inconsistent: A system of linear equations is said to be inconsistent if the system has
no solution.
Now we will solve the system of non-homogeneous linear equations with the help of
the following methods:

(i) Using reduced echelon form (i) Using matrix inversion method
(ii1) Using Cramer’s rule

4.8.1 Reduced Echelon Form

There are following steps to solve a system of non-homogeneous linear equations (i):
(i) Convert to augmented matrix

al bl cl dl
1.€. a, b, c,|d,

a, by, ¢ |d,

(i1)) Convert to reduced echelon form (iii)) Solve by back substitution
Example 11: Solve the following and explain a consistent and inconsistent system:
(1) 2x+5y—z=5 (i1) x+y+2z=1 (i) x—y+2z=1
3x+4y+2z=11 2x—y+7z=11 2x—6y+5z=7
xX+2y—-2z=-3 3x+5y+4z=-3 3x+5y+4z=-3
25 -1 : 5
Solution: (i) The augmented matrix of the given systemis |3 4 2 : 11
1 2 =2 : -3

We apply the elementary row operations to the above matrix to reduce it to the
equivalent reduced (row) echelon form, that is,

25 -1 1 5 12 21 -3
34 2 P 11|RB[3 4 2 11| ByR©R,
12 21 3| |25 1% 5
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1 2 2% -3 1 2 2% -3
Rlo 2 8 : 20|ByRrR+(-3)R >R %0 2 8 : 20|Byr+(2r >~
2 5 -1 5 0 1 3 i 11

By —%Rz — R, we get

122 3710 6 i 17 ,
01 41 —10|Bl0 1 —4 : —10|PYRFCDRDK
. . and R, + ()R, > R,
01 3 i 11| oo 7 i 21
10 6 17 100t ] e R
: . +(-6)R ;>
Rlo 1 —4: -10Bysr—>g& Rlo10: 2|7 ™ 0
) 7 ) and  R,+4R,—> R,
00 1 i 3 001 : 3

Thus, the solution is x=-1,y=2 and z =3, therefore the given system of linear
equations has unique solution and it is consistent.

1 1 2 : 1
(ii) The augmented matrix of the given systemis [2 -1 7 : 11
35 4 : 3
1 2 : 1 1 1 2 : 1
2 -1 7 ¢ 11|Bl0o -3 3 i 9 | Adding (-2)R, to R, and (-3)R, to R,.
35 4 : -3 0 2 -2 : -6

11 2 :1 103 : 4
Weget,fle 01 -1:-3 By_lz ,p Rlo1 -1 :-3| BYR+(-DR—>R
02 -2:-6 3 000 : 0 and R, + (-2)R, > R}
The given system is reduced to equivalent system
x+3z=4
y—z=-3
0z=0

The equation 0z = Ois satisfied by any value of z.
From the first and second equations, we get
x=-3z+4 (a)

and y=z-3 (b)
As z is arbitrary, so we can find infinitely many values of x and y from equations (a)
and (b) or the given system, is satisfied by x=4-3¢,y =¢—-3 and z = ¢ for any real
value of 7.
Thus, the given system has infinitely many solutions and it is consistent.
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1 -1 2 : 1
(iii) The augmented matrix of the systemis |2 —¢ 5 : 7

35 4 : 3
1 -1 2 ¢ 1 1 -1 2 1
2 6 5 7|B0 -4 1 : 5 |Adding (-2)R toR, and (-3R,)to R, .
3 5 41 3] |0 8 -2 -6

We have,
_ ; .
: 10 £ @ _=Z
1 -1 2 : 1 4 4
Rio 1 1 ;2 By —1R2—>R’2 Rlo 1 1 : _ 3| ByR+1.R, >R
4 4 4 and R, +(-8)R, > R,
08 -2:-6 00 0 : 4

Thus, the given system is reduced to the equivalent system

1
x+—z=——
477
L]
VT4
0z=4

The third equation 0z =4has no solution, so the system as a whole has no solution.
Thus, the system is inconsistent.

We see that in the case of the system (i), the (row) rank of the augmented matrix and the
coefficient matrix of the system is the same, that is, 3 which is equal to the number of the variables in
the system (i).

Thus, we observe that a linear system is consistent and has a unique solution if the rank of the
coefficient matrix is the same as that of the augmented matrix of the system and equal to number of
variables.

In the case of the system (ii), the rank of the coefficient matrix is the same as that of the augmented

matrix of the system but it is 2 which is less than the number of variables in the system (ii).

Thus, we observe that a system is consistent and has infinitely many solutions if the ranks of the
coefficient matrix and the augmented matrix of the system are equal but the rank is less than the number
of variables in the system.

In the case of the system (iii), we see that the rank of the coefficient matrix is not equal to the rank of
the augmented matrix of the system.

Thus, we observe that a system is inconsistent if the ranks of the coefficient matrix and the augmented
matrix of the system are different.

4.8.2 Matrix Inversion Method

The matrix inversion method is a way to solve a system of linear equations using the
inverse of a matrix.
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x—2x,+x, =-4
Example 12: Use matrix inversion method to solve the system 2x, —3x, + 2x,=—6

2x,+2x,+x; =5
Solution: The matrix form of the given system is

1 -2 1] x —4
2 3 2| x,|=| -6
2 2 11| x 5
or AX =B ..()
-2 1 X, —4
Where A=|2 -3 2 ,X={x2 and B=| -6
2 2 1 X, 5
1 -2 1 1 2 1
As  |4=]2 -3 2| =0 1 0 ByR+(2R >R,
2 2 1 2 2 1
Expanding by R, we have
242 11 .
=D )1 =(1-2)=-1, that is,

|A| # 0, so the inverse of A exists and (i) can be written as

X=4"'B ...(i1)
Now we find adj 4.
-7 2 10
= I:Aﬁ :'3><3 =4 -1 -6,
-1 0 1

A,=-1,4,=2,4,=10,4, =4
Ay =-1,4,=-6,4;, =-1,4;, =0,4;; =1

Cofactors are

-7 4 -1
So adjA4=|2 -1 0
10 -6 1

7 4 -1 7 -4 1

and A":iade=i 2 -1 0l=|-2 1 0

14 10 -6 1| |-10 6 -1
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[ x, ] —4 7 -4 1]|[-4
Thus| x, [=47'| -6 |=| -2 1 0 || -6

EN 5 -10 6 ~-1|| 5

_xl_ 1

x, |=| 2

X -1

Mathematics

—28+24+5
&8—6+0
40-36-5

,1.€.,

Thus, the solution set is {(x,, x,, x;)} = {(1, 2, -1)}

4.8.3 Cramer’s Rule

Consider the system of equations,
ay X, +a,x, +a;,x, = b,
Ay X, + Ay X,y + Ay3Xy = b,

a3, X, + apX, + a3 X, = by

(i)

These are three linear equations in three variablesx,,x,,x;with coefficients and

constant terms in the real field R. We write the above system of equations in matrix

form as:
AX =B
X
where A=[a,l,,, X=| x, | and
X3

(i)
bl
b2
b3

B =

We know that the matrix equation (2) can be written as: X = A™'B  (if 4™ exists)

1

We have already proved that 4™ = |A| adj 4
All
and adj A=[4;],;=| 4,
Al3
xl 1 All A21 A3l bl 1
Thus | x, m A, A, A4,||b |= m
X3 Ay Ay Ay || b

A21 A31
Azz A32 (- A;j = Aji)
Azs A33

A\b, + A,,b, + 4;,b,

A12b] + A22b2 + A32b3

A13b1 + A23b2 + A33b3
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| A b+ A b+ ADb, |
) A
1
ie., x, |= A, + "4|2124l|)2 + As,b,
x3
A13bl + A23b2 + A33b3
I |4 l
b a, a
b2 a22 a23
bA, +b A, +b.A b, a a
Hence xl — 1711 2|A|21 34731 — 3 |Z| 33 (111)
all bl al3
a21 b2 a23
X, = blAIZ + b2A22 + b3A32 — a31 b3 a33 (IV)
’ |4 |4]
all a12 bl
a2] a22 b2
.- bA,+bAy+bdy |4y 4y b, ")
3 |4] |4]

The method of solving the system with the help of results (iii), (iv) and (v) is often
referred to as Cramer’s Rule.

3x,+x,—x,=—4
Example 13: Use Cramer’s rule to solve the system. x, +x, —2x, =—4

=X, +2x,—x;=1

31 -1
Solution: Here [4|=|1 1 -2|=3(-1+4)-1.(-1-2)-1.(2+1)
-1 2 -1
=9+3-3=9
-4 1 -1
-4 1 2
So, xlzl z —1:—4(—1+4)—1(49+2)—1(—8—1)
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_-12-649 9
9 9
3 4 -1
1 -4 2
LU ] 3@+2)+41-2)-10-4)
2 9 9
:18—12+3:2:1
9 9
3 1 4
1 1 -4
L2 1] 30+8)-10-4)-4@+D) _27+3-12_18
} 9 9 9 9
Hence x,=-1x,=1,x,=2

Thus, the solution set is {(x,, x,, x;)} = {(-1, 1, 2)}

4.9 System of Homogeneous Linear Equations
The system of following homogeneous linear equations:

a,x, +a,x, +a;x, =0

Ay X, + Ayy Xy + Ay X, =0 ...(1)

Ay, X, + aypx, + ayux, =0
is always satisfied by x, =0,x, =0 and x, = 0, so such a system is always consistent.

Trivial Solution: The solution (0, 0, 0) of the above homogeneous system is called
the trivial solution.

Non-Trivial Solution: Any other solution of system (i) other than the trivial solution
is called a non-trivial solution.

4.9.1 Solution of System of Homogeneous Linear Equations by

Gaussian Elimination Method

Gaussian Elimination is a systematic method for solving systems of linear equations,
named after the German mathematician Carl Friedrich Gauss. It involves performing
a series of row operations on the system's augmented matrix to transform it into row-
echelon form. Once the matrix is in this simplified form, the solution to the system

can be determined through back substitution. This method is widely used due to its
efficiency and clarity in solving linear systems.
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Example 14: Solve the following system of equations by Gaussian Elimination
method:

x+2y+z=0
2x+3y+4z=0
4x+3y+2z=0

Solution: The augmented matrix is

12 1/0
4,=|2 3 40
43 20
1 2 1]o0
Rlo -1 2|0|ByR,+(-2)R — R,and R, +(—4)R, —>= R,
0 -5 -2/0
1 2 10
= Rlo 1 -2[0|By(-)R, >R,
0 -5 -20
1 2 1]0
= R0 1 -2|0|ByR,+5R, >R,
0 0 —120
1 2 1|0 1
= Rlo 1 -20 By(_—jR3 — R, (Rank of 4 = 3 = number of variables)
12
0 0 1/0

The matrix is in row-echelon form.
By back-substitution, from the third row, z = 0.
from the second row: y—2z=0

y—2(0)=0
y=0
From the first row, x + 2y + z = 0, substituting y = 0 and x = 0, we have
x+20)+0=0
x=0

Thus, the system has only trivial solution, i.e., (x , y, z) = (0, 0, 0).
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Example 15: Solve the following system of equations using Gaussian Elimination
Method.

X+ x+ x;, =0
X — x,+3x; =0
x,+3x,— x;, =0

Solution: The argumented matrix is

1 1 1o
4,={1 -1 3]0
1 3 -10
1 1 1]o
Rlo -2 2/0| ByR,+(-DR — R, and R,+(~1)R — R,

0 -2 -2/0
1 1 1]0]

= Rlo 1 -1o0 Byﬁ—lJRz—m;
0 2 -2/0] 2
1 1 1/0]

= Rlo 1 -1lo By R,+(-2)R, > R, (Rank of A4 < number of
0 0 0]0]

variables)

The matrix is in row-echelon form
Thus, the above system is reduced to the equivalent system of equations

X, +x,+x;=0 (1)
X, —xy3 =0 (i1)
Ox; =0
From (i) and (i1), we get
X, ==X, — X3 (111)
Xy =X

Substituting x, = x; in (iii), we get
X =Xy — Xy = 2X5
= X, =—2x5 (iv)
As x; is arbitrary, so we can find infinitely many values of x, and x, from (iii) and (iv)
or the system is satisfied by x, = -2¢, x, = ¢ and x; = ¢ for any value of .
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From above examples we observe that:

Rule — I: Homogeneous system of linear equation has only trivial solution if
rank of 4 = number of variables.

Rule — II: Homogeneous system of linear equation has non-trivial solution if

rank of 4 < number of variables.

4.10 Applications of Matrices in Real World

Matrices play a crucial role in solving real-world problems across various fields. In
graphic design, they help manipulate images through transformations like scaling,
rotation, and reflection. Data encryption and cryptography use matrices for secure
communication by encoding and decoding messages. In seismic analysis, engineers
use matrices to model and predict earthquake wave behavior. Geometric
transformations, such as translation and dilation, rely on matrices to modify shapes in
computer graphics. Additionally, social network analysis leverages matrices to
represent and analyze relationships between individuals, identifying key influencers
and connections in a network.

Transformation or Reflection Matrix is a mathematical tool that represents the
reflection of a point or object across a mirror line in a coordinate plane. It’s a matrix
representation of a reflection transformation. In two dimensions, this typically means
reflecting across the x-axis, y-axis or a line such as y = x.

1 0]

To reflect a matrix over the x-axis, we have multiply it by 0 -
: : . -1 0]

To reflect a matrix over the y-axis, we have multiply it by 0 1

0
To reflect a matrix over the line y = x, we have multiply it by L 0}

Example 16: A triangle has the vertices A(2, 3), B(-1, 4) and C(3, —2). Find the
vertices of the reflected triangle over the x-axis by using transformation matrix.

Solution: To reflect a point across a certain axis or line, we have multiply the point
as a column vector by the corresponding transformation matrix.

Here, to reflect the given points over the x-axis, we use the transformation matrix

o 4y
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Write the points as column matrices

e

. 1 0|2 2+0 2
The vertex 4’ of the reflected image = = =(2,-3)
0 -1|13 0-3

. 1 0||- -1+ O
The vertex B’ of the reflected image = o —1ll4 =(-1,-4)

1 0 3
The vertex C’ of the reflected image = =(3,2)
0 —-1||-=2 0+2 2

Thus, the vertices of the reflected triangle are 4'(2, —3), B'(—1, —4) and C'(3, 2).
Coding is the process of converting a message into a specific format using a code. A
code is a system of symbols, words or signals used to represent other words or
meanings. It’s often used to hide the actual meaning of a message.

To decode a message, we multiply coded matrix by the inverse of the given matrix.

L»)

1 2
Example 17: Use matrix 4 = L 1][0 encode the message: ATTACK, where

letters A to Z are corresponding to the numbers 1 to 26.
Solution: Here
A B C D E F G H
1 2 3 4 5 6 7 8
T

I
9
N O P Q R S u VvV W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 26
Divide the letters of the message into groups of two.
AT TA CK
Assign the numbers to these letters and convert each pair of numbers into 2 X 1

RO B

. . .| 1]1]20]3
So, the message in 2 x 1 matrices is
20 ([ 1 | |11

Now to encode, we multiply, on the left, each matrix of our message by the matrix A4.

S FE I E
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1 2] 20___20 + 2___22_
3 1] 1] [60 + 1| |61]
1 2] 3___3 + 22___25_
3 1] [11] [9 + 11] [20]
: _[4r]22][25
So, the desired coded message is
231161120

P~ EXERCISE 4.3 4

1. Find the inverses of the following matrices by using row operations:

1 2 3 12 -1 1 6 2
a0 -2 0 @) |0 -2 8 (i) [2 13 0
-2 4 6 10 2 10 -1 1
2. Find the rank of the following matrices:
. _2 _6 1 _1 .o - voe - - -
) Wiy o 2|, 3 4 2
3 1 4 2
0 1 -1 2 5 -2 3 3
3. Solve the following systems of linear equations by Cramer’s rule:
2x+y—z=1 X +2x,-3x,=0 2x,—x, +x; =1
(i) x—y+2z=3 (i)  dx—x,+x; =5 ¢ (i) x +2x,+2x,=2
3x+2y+z=4 —2x,+3x,+2x,=3 X, —2x,—x, =1

4.  Solve the following systems of linear equations by matrix inversion method:

x=2y+z=-1 2x,+x,+3x,=3 x+y=2
(i) 3x+y—-2z=4 (i) x +3x,—2x, =0 (iii) 2x—-z=1
y—z=1 =3x,—x,+2x,=4 2y-3z=-1

5. Solve the following systems by reducing their augmented matrices to the
echelon form and the reduced echelon forms:

X +2x,-2x,=-1 X+2y+z=2 X +4x, +x,=2
(1) 2x+3x,+x;=1  (ii) 2x+y+2z=3 (iii) 2x,+x,—2x,=9
5x,+4x,-3x;, =1 2x+3y—z=7 3 +x,—x,=12
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6.

10.

11.

Solve the following systems of homogeneous linear equations by using
Gaussian elimination method:

X+4x-2z=0 X, +4x,+2x,=0 X +2x,—x,=0
(i) 2x+y+5z=0 (i) 2x+x,-3x,=0p (i) x-—x,+5x=0
5x+2y+8z=0 3x,+2x,-4x,=0 2x,+x,+4x,=0

A triangle has vertices at 4(4,1), B(—2,5) and C(0,—-3). Find the vertices of the
reflected triangle over the y-axis using a transformation matrix.

-5 0 0
The point 4 is mapped to (30, 20, —5) by the scaling matrix P=| 0 -5 0
0 0 -5

Find the coordinates of 4.
[Hint: If A is mapped to 4’ by scaling matrix P, then AP = A4']

Find the equation of the image of the curve with equation y = x* under the

2
transformation with associated matrix L : }

1 0 1
Use the matrix 4 = |2 -1 1| to encode the message: KEEP IT UP, where
0 1 2
letters 4 to Z are corresponding to the numbers 1 to 26.
11][25](]22
Decode the message |20|[10||14| that was encode using matrix
43 1141|411
1 1 -1
A=|1 0 1|, where the numbers 1 to 26 are corresponding to the letters
2 1 1
Ato Z.



Partial Fractions

INTRODUCTION

We have learnt in the previous classes how to add two or more rational fractions into a
single rational fraction. For example,

1 2 3x

(i =
x=1 x+2 (x-D(x+2)

3 2 1 3 5x% +5x-3
and  (ii) + ~+ = >
x+1 (x+1)° x-2 (x+D)°(x-2)

In this unit we shall learn how to reverse the order in (i) and (ii) that is to express a
single rational function as a sum of two or more single rational functions which are
called Partial Fractions.

Expressing a rational function as a sum of partial fractions is called Partial Fraction

Resolution. It is an extremely valuable tool in the study of calculus to decompose a
complex rational function into a sum of simpler fractions.

¢

An open sentence formed by using the sign of equality ‘=" is called an equation. The
equations can be divided into the following two kinds:
Conditional equation: It is an equation in which two algebraic expressions are equal

for particular values of the variable e.g.,

(a) 2x = 3 is a conditional equation and it is true

it 3
onty it x= PR For simplicity, a conditional
equation is called an equation.
(b) x>+ x—6=0is a conditional equation and it is

true for x =2, —3 only.

Identity: It is an equation which holds good for all values of the variable e.g.,

(a) (a+b)x=ax+bx is an identity and its two sides are equal for all values of x.

(b) (x+3)(x+4)=x"+7x+12is also an identity which is true for all values of x.

For convenience, the symbol “=" shall be used both for equation and identity.
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5.1 Rational Fraction

An expression of the form % , where P(x) and Q(x) are polynomials in x with real
X

coefficients and Q(x) # 0, is called a rational fraction. A rational fraction is of two

types.

5.1.1 Proper Rational Fraction

P
A rational function é(% is called a Proper Rational Fraction if the degree of the
polynomial P(x) in the numerator is less than the degree of the polynomial Q(x) in the

3 2x-5 d Ox? onal fracti
Y+1’ 214 and 7 are proper rational fractions or

denominator. For example,

proper fractions.

5.1.2 Improper Rational Fraction

P
A rational fraction ﬁ is called an Improper Rational Fraction if the degree of the

polynomial P(x) in the numerator is equal to or greater than the degree of the
polynomial Q(x) in the denominator.

x  (x=2)x+1) x*-3 X -x*+x+1
-3 (x— D(x+4) 3x+12 x2+5

For example,

are improper rational fractions or improper fractions.
Any improper rational fraction can be reduced by division to a mixed form, consisting
of the sum of a polynomial and a proper rational fraction.

3 +1 .. : . L
For example, . _, IS animproper rational fraction. By long division we

-2
bai 3x2+1_3 P 13 3x+6
obtain =TT = Sy 6+ T x=2)3x7+1
2
-1 —
i.e., an improper rational fraction has ;C_ 5 been reduced +3x" F 6x
to the sum of a polynomial 3x + 6 and a proper rational 6x+1
fraction 2 13

When a rational fraction is separated into partial fractions, the result is an identity;

1.e., it is true for all values of the variable in the domain of identity.
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The evaluation of the coefficients of the partial fractions is based on the following
theorem:

“If two polynomials are equal for all values of the variable, then the
polynomials have same degree and the coefficients of like powers of the
variable in both the polynomials must be equal”.

For example,
If px’ +gx° —ax+b=2x"-3x"—4x+5, Vxthenp=2,g=-3,a=4and b=5.
P(x)

0(x)

5.1.3 Resolution of a Rational Fraction into Partial Fractions

P(x)

O(x)

Following are the main points of resolving a rational fraction into partial

fractions:

(1) The degree of P(x) must be less than that of Q(x). If not, divide and work with
the remainder theorem.

(i)  Factor the denominator Q(x)into its irreducible factor, write the rational
fraction into partial fractions.

(ii1))  Multiply the identity with the denominator of left hand side.
(iv)  Equate the coefficients of like terms (powers of x).

(v) Solve the resulting equations for the coefficients.

We now discuss the following cases of partial fractions resolution.

Case I: Resolution of %x;into partial fractions when Q(x) has only non-
X

repeated linear factors:
The polynomial Q(x) may be written as:

Ox)=(x—a))(x—a2) ... (x—an), where ar#ax+#....# an

P(x) A A, A . . .
= + + ...+ is anidentity.
O(x) x-a x-a, x—a

n

Where A1, A, ..., A, are numbers to be found.

The method is explained by the following examples:

Example 1: Resolve7x—Jr25 into partial fractions.

(x+3)(x+4)




Unit Q Partial Fractions Q> Mathematics

Tx+25 A N B
(x+3)(x+4) x+3 x+4

Multiplying both sides by (x + 3) (x + 4), we get

Solution:  Suppose

Tx+25 = A(x+4)+B(x+3)
= Tx+25 = Ax+44+ Bx+3B
= Tx+25 = (A+B)x+44+3B

this is an identity in x.
So, equating the coefficients of like powers of x we have
7 =A+B and 25= 44+3B

Solving these equations, we get and .

Tx+25 _ 4 N 3
(x+3)(x+4) x+3 x+4’
Alternative method

Hence,

Tx+25 A B
Suppose = +
(x+3)(x+4) x+3 x+4
= Tx+25 =A(x+4)+B(x+3)

As two sides of the identity are equal for all values of x,

Letusputx=—3 and x=-4init.

For A4, putting x + 3 =0 i.e., x = -3 we get,
—-21+25=4(-3+4)
= A=4

For B, putting x + 4 =01.e., x =— 4 we get,
—28+25=B(-4+3)

= B=3
Tx+25 4 3
Hence, = + .
(x+3)(x+4) x+3 x+4
2
Example 2: Resolve ¥ —10x+13 into Partial Fractions.

(x—1)(x* —5x+6)
Solution: The polynomial x> — 5x + 6 in the denominator can be factorized and its
factors are x — 3 and x — 2.
x> —10x+13 x?—10x+13
(1)’ —5x+6) (x—D)(x—2)(x—3)
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x> —10x+13 A B C
Suppose = + +
(x-D(x-2)(x-3) x-1 x-2 x-3
= ¥ = 10x+ 13 =A(x—2)(x—3) + B(x— 1)(x —3) + C(x — 1)(x - 2)

which is an identity in x.
For 4, putting x—3=01.e.,x =1, we get
(1)?=10(1)+ 13 =41 -2)(1=3)+B(1 - 1)1 -3)+C(1 - 1)(1-2)
= 1-10+13 =A4(-1) (-2) + B(0) (- 2) + C(0) (-1)
4=24
A=2
For B, putting x-2 =0 i.e., x = 2, we get
(2)?2-102)+13 =4(0) 2-3)+B2-1)(2-3)+C2-1)(0)

= 4-20+13 =B(1)(-1)
= -3 =-8B
B=3

For C, putting x-3 =0 i.e., x = 3, we get
(3)?-103)+13=43-2)(0)+BB -1 (0)+C3-1)(3-2)

= 9-30+13=C(2) (1)
= —8=2C
C=-4

. . 2 3 4
Hence partial fractions are: + —
x-1 x-2 x-3

3 2
Example 3: Resolve 2x o3 into Partial Fractions.
x(2x+3)(x-1)

. 2x +x7—x-3 . . 1
Solution: .. is an improper

X(2x+3)(x=1) 2x3+x2—3x>2x3+x2—x—3
fraction so, first transform it into mixed form. 3. 2
£2x" £ x"F3x

Denominator = x(2x + 3)(x — 1) = 2x* + x> — 3x 27%_3

Dividing 2x* +x* — x - 3 by 2x° +x* - 3x,
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we have
Quotient=1 and Remainder = 2x — 3

2x° +x*—x-3 — 14 2x-3
x(2x+3)(x-1) x(2x+3)(x-1)
2x-3 A B C
Suppose =+ +—
x2x+3)(x-1) x 2x+3 x-1
= 2x—3 = A2x +3)(x— 1)+ B(x) (x— 1) + C(x) 2x + 3)

which is an identity in x.

For A, putting x = 0 in the identity, we get |4 =1

For B, putting2x +3=0 = x=- % in the identity, we get |B = —%
For C, putting x — 1 = 0 = x = 1 in the identity, we get |C = —%

. . 1 8 1
Hence partial fractions are:1 + —— —
x 52x+3) 5(x-1)

Case I1: When Q(x) has repeated linear factors:
If the polynomial Q(x) has a repeated linear factors (x — a)”, n > 2 and n is a positive
integer, then —gix; may be written as the following identity:
X
P __4 + 4 S+t 4, -
0x) (x—a) (x—a) (x—a)
where A1, A», ..., A, are numbers to be found.

The method is explained by the following examples:
2

Example 4: Resolve into partial fractions.

3

(x+2)
2 —
Solution: Supposex +x3l: 4 + B ~+ ¢ .
(x+2) x+2 (x+2) (x+2)
= FHx—1=Ax+2?+B(x+2)+C (i)
= xX*+x-1=Ax*+4x+4)+Bx+2)+C (i)

For C, putting x +2 =0, i.e., x =-2 in (i), we get
(=2)* + (=2) = 1=A4(0) + B(0) + C
= 1=C
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Equating the coefficients of x* and x in (ii), we get |4 =1
and 1=44+8B

= 1=4+B =
3 1

Hence the partial fractions are: - >+ 5
x+2 (x+2) (x+2)

Example 5: Resolve into partial fractions.

(x+1)*(x*=1)
Solution: Here denominator = (x + 1)* (x> — 1)
=(x+t1PE+DE-1) = &+1Px-1)

1 1
(x+1)2(x*=1) (x+1)°(x=1)
1 A B C D

Suppose

= + + +
(x-D(x+1° x-1 x+1 (x+1> (x+1)’
= 1=A@x+ 1)’ +Ba+]) x- D)+ Cx—-Dx+1)+Dx-1) ..3)
= 1=A@+33+3x+ )+ B +x2—x— DFCGE— 1) + D(x — 1)
= 1=(A+B)x*+(34+B+C)x*+(34 -~ B+ D)x+(4 — B—- C— D) ...(ii)
For 4, puttingx—1=0 = x=1 in (i), we get

1 =4Q2) = |4=2

For D, puttingx+1=0 = x=-1 in (i), we get

1=D-1-1) = D=—l
2
Equating the coefficients of x* and x* in (ii), we get
0=4+B = B=-4 = B:—é
31 1
and 0=34+B+C = 0=-——-+C = |[C=——
8 8 4
Hence the partial fractions are:
e r it 1
8 , 8. 4 2 1 1 1 1

x—1 x+1 (x+17 (x+1° 8x—1) 8(x+1) 4(x+1> 2(x+1)’
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P~ EXERCISE 5.1 4

Resolve the following into partial fractions:

1 1 5 (x> +1) 3 2x+1
S X1 C (x4 D(x-1) C(x=D(x+2)(x+3)
3x* —4x-5 5 6x° +5x2 -7 6 (x=D(x=3)(x-5)
(x—2)(x* +7x+10) Co2xt—x-1 T (x=2)(x—4)(x—6)
x*+a’

3 LNV LNV 3 [Hint: Put x> = y to make factors of the denominator linear]
(X" +b7)(x"+c ) x"+d)

2x* =3x+4 9 5x*—2x+3 0 Ax
(x—1)° S (x+2) S (x+D*(x=1)
2x*

1, —
(x=3)(x+2)
Case I1I: When Q(x) contains non-repeated irreducible quadratic factors

Definition: A quadratic factor is irreducible if it cannot be written as the product of
two linear factors with real coefficients. For example, x> + x + 1 and x> + 3 are
irreducible quadratic factors.

If the polynomial QO(x) contains non-repeated irreducible quadratic factors then gix;
X
may be written as the identity having partial fractions of the form:
;4x_+B where 4 and B are the numbers to be found.
ax” +bx+c

The method is explained by the following examples:

3x—11 . . .
Example 6: Resolve (2 + D(x+3) into partial fractions.

3x-11 :Ax+B+ C
(P +D(x+3) x*+1  x+3
= 3x-11=Ux+B)(x+3)+C(x*+1) 6]
— 3x-11=U+ )2+ B4 +B)x+ BB+ C) (ii)
For C, puttingx+3=0 =  x=-3 in (i), we get
-9-11=CO+1) = C=-2

Solution: Suppose
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Equating the coefficients of x* and x in (ii), we get

0=4+C = A=-C =
and 3=34+B= B=3-34 = B=3-6 = B=-3
2x—3_ 2

2

Hence, the partial fractions are:
x +1 x+3

4x* +8x
x'+2x7+9
Solution: Here, denominator = x* + 2x* + 9 = (x* + 2x + 3) (x> — 2x + 3)
4x* +8x B 4x* +8x
X232 +9 (P +2x+3)(xF—2x+3)

4x” +8x __Ax+B | Cx+D
(X +2x+3)(x*—2x+3) x*+2x+3 x’—2x+3
= 4 +8x=Ux+B)(x¥*-2x+3)+(Cx+ D) (x*+2x+3)
= 4?+8x=A+C)x*+(-24+B+2C+ D) x?

+(B34-2B+3C+2D)x+3B+3D (1)

Example 7: Resolve into partial fractions.

Suppose

which is an identity in x.
Equating the coefficients of x°, x%, x, x° in (i), we have

0=4+C (i1)
4=-24+B+2C+D (iii)
8=34-2B+3C+2D (iv)
0=3B+3D (v)

Solving (i1), (ii1), (iv) and (v), we get
l4=1], |B=2|,|Cc=-1| and |[D=-2]

x+2 —x—2
2 + 2
X +2x+3 x"—2x+3
Case I'V: When Q(x) has repeated irreducible quadratic factors

Hence the partial fractions are:

If the polynomial Q(x) contains a repeated irreducible quadratic factors (ax* + bx + ¢)",

n >?2 and n is a positive integer, then % may be written as the following identity:
X
P(x) _ Ax+B N A,x+B, Ax+B,

it ————
O(x) ax’+bx+c (ax’+bx+c) (ax” +bx+c)"

where A1, B1, A2, B2, ..., An, Bx are numbers to be found. The method is explained
through the following example:
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2

Example 8: Resolve # into partial fractions.

(x*+D7(x-1

. 4x’ Ax+B Cx+D E
Solution: Let ——— =— —
(x+D)(x-1) x+1 (x+1)" x-1

= 4x? = (Ax+B)(x*+ 1)(x = 1)+ (Cx+ D)(x — 1) + E(x* + 1)? (1)
= 4= A+E)x*+(~4+B)X*+A-B+C+2E)x’

+(~A+B-C+D)x+(-B-D+E) (ii)

For E, puttingx—1=0 = x=1 in(i), we get
4=EQ1+1? = [E=1

Equating the coefficients of x* x°, x?, x, in (ii), we get
0=A+E = A=-E =
=—A+B = B=4 =
4=A4A-B+C+2E

= C=4-A+B-2E=4+1-1-2 =

and 0=—A+B-C+D

=N D=A-B+C=-1+1+2=2 =

—x—1 2x+2 1
2 + 2 2+
x+1 (x*+1)° x-1

Hence partial fractions are:

P~ EXERCISE 5.2 4

Resolve into partial fractions:

9x—7 5 x’+15 3 x +1
(x> +1)(x+3) L (P +2x+5)(x-1) S X+l
x* 2x-5 8x?
4' 4 . 2 2 6 2 2 2
I-x (x*+2)(x-2) (x*+D°(1-x7)



Sequences and Series

INTRODUCTION

In this unit, students will learn to analyze and solve problems involving arithmetic,

geometric, and harmonic sequences and series, including their real-world applications.
Learners will identify various sequence types, compute finite and infinite sums, and
utilize sigma notation. Additionally, they will explore practical scenarios such as motor
vehicle leasing, investment planning, and financial calculations. This unit also
emphasizes applying these concepts to diverse fields, including healthcare, finance,
and traffic modeling. Finally, Students will be able to solve both theoretical and real-
life problems using sequences and series effectively.

Let us observe the following pattern of numbers.

(i) 5,11,17,23, ... (ii) 6,12,24,48, ...
(iii) 4,2,0,-2,-4, ... vy 2,4 8 16
39727 81

In example (1), every number (except 5) is formed by adding 6 to the previous numbers.
Hence a specific pattern is followed in the arrangement of these numbers. Similarly, in
example (i1), every number is obtained by multiplying the previous number by 2.
Similar cases are followed in example (ii1) and (iv). When a set of numbers follows a
pattern and there is a clear rule for finding next number in the pattern, then we have
sequence as in above examples.

6.1 Sequence

A systematic arrangement of numbers according to a given rule is called a sequence.
The numbers in a sequence are called its terms. We refer the first term of a sequence
as a,, second term as a, and so on. The n'™ term of a sequence is denoted by a, , which

may also be referred to as the general term of the sequence, and the terms immediately

preceding it are called the (n — 1)st term, the (» — 2)nd term and so on.

6.1.2 Finite and Infinite Sequences

1. A sequence which consists of a finite number of terms is called a finite sequence.
For example, 2, 5, 8, 11, 14, 17, 20, 23 is a finite sequence of § terms.

2. A sequence which consists of an infinite number of terms is called an infinite
sequence. For example, 3, 10, 17, 24, ... is an infinite sequence, or more generally
as 3,10,17,24, ..., 7n—4, ... to show how each term was generated.
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Note: If a sequence is given, then we can find its n term and if the n term of a sequence is given
then we can find the terms of the sequence.

Example 1: Find the first four terms of the sequences whose » terms are given.
(1) an=3n+1
Substituting n = 1, we have
a=31)+1=4
Similarly, a,=32)+1=7
a,=33)+1=10
a,=34)+1=13
The first four terms of the sequence are 4, 7, 10, 13
(i) an=3n*>-3
Substituting n = 1, we have
a, =3(1*-3=0
Similarly, a, =3(2)>-3=9
a, =3(3)*-3=24
a, =3(4)*-3=45
The first four terms of the sequence are 0, 9, 24, 45
Sequences of numbers which follow specific patterns are called progression.
Depending on the pattern, the progression is classified as follows.
(i) Arithmetic progression (i1)) Geometric progression
(ii1)) Harmonic progression

1. Find the next four terms of each sequence.

(1) 12,16,20,... (1) 3,1,-1,...
2. Write down the first three terms of each sequence.

(1) an=3n+5 (1) a,,= 4a,-7 and a =3

() ap=Mm-3)n+1) av) a=-1 a,, = 3

a,+2
) a =8——2 i) a=1, a. =QGa+2)
3+n

(vii) a,=(2n" (viii) a, =(-1)"7 #

3. An expression for the n™ triangular number is % Write down the 15%

triangular number.
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4.  Write down the n'" term of each sequence.

(a) 7,13,19,25,... (b)) 7,4,1,-2,...
1111
C) —, =, =, — d) -15,-4,7,18,...
© 2 3 4°5 @
5. The n'™ term of the sequence 2, 0, —2, —4, ... and the n'" term of the sequence

-22,-20,-18, 16, .... are equal, find the value of n.
6.2 Arithmetic Progression or Arithmetic Sequence (A.P.)

A sequence {a,} is an arithmetic sequence or arithmetic progression (A.P.), if @, — a1
is the same number for all » € N and n > 1. The difference a, — a,-1 (n > 1) i.e., the
difference of two consecutive terms of an A.P., is called the common difference and
is usually denoted by d.

Thus, an arithmetic progression is a sequence in which each term after the first is found
by adding a constant to the previous term. This constant is called common difference

of the arithmetic progression.

For example: Following sequences are A.P. fa a.a..a..areinAP.
(1) 1,3,5,7,... (common difference is 2) S ’
(i) 54,51, 48, ... (common difference is —3)

OAn arithmetic progression with n terms can be

written as:

then d=a,-a=a—a, = ..

where a is n'™ term of the A.P.

a,a+d,a+2d,..,[a+n-1)d]
The n' term of an arithmetic progression can be written as:
a,=a, +(n-1)d
(i) 1,2, 3 and n™ terms of an A.P. are denoted by «,, a,, a, and a, respectively.

(ii) n™ term from the end of an A.P. is (m — n + 1) term where ‘m’ denotes the total number of terms
of an A.P.

(ii1) Three numbers a, b, ¢ are in A.P. if and only if 2b=a + c.

(iv) Any term (except first and last) in an A.P. is equal to half of the sum of two terms equidistant
from it.

(v) If the term a, is unknown or not given, the nth term can be written as a, = a, + (n —m)d

(the subscript of the given term and coefficient of d sum to #)

The middle term of an A.P. depends upon the number of terms, e.g.,
1 1,3,5,7,9,11isan A.P. withn==6
@) 1,3,5,7,9,11,13 isan A.P. withn =7
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1.e., If the total number of terms of an A.P. is even, then there are two middle terms i.e.,

(g Jth and (g +1 jth where n represent the number of terms. In example (i) 5, 7 are

two middle terms.

If the total number of terms of an A4.P. is odd, then there is only one middle term i.e.,

(l’l-zi-l jﬂl term. In example (11) 7 is the Ol’lly middle term.

6.2.1 Selection of terms in A.P.

(i) Three consecutive terms of an A.P. can be chosen asa —d, a,a+d ora,a+d,
ora-+2d

(i1)) Four consecutive term of an A.P. may be written like a —3d, a—d, a +d, a + 3d
ora,a+d,a+2d,a+3d.

(ii1)) Last four consecutive terms if / is the last term can be written as below:
0-3d,0-2d,0—d, ¢

If each term of an A.P. is increased or decreased, multiplied or divided by the same

non-zero number, then the resulting sequence is also an A.P. i.e.,if a,, a,, a,, ... a, are

in A.P., then
(1) axk,a,tk,.., a, £k,.. arealsoin A.P. with common difference ‘d’.

(1) ka,, ka,, ... ,ka,, ... are in A.P. with common difference ‘kd’.
(1i1) %, %, ,% ... A.P are in A.P. common difference %

(iv) Term by term addition or subtraction of two arithmetic progressions is also an
AP ie.,

Ifa, a,, a;,...a and b, b,, b;,...b,,... are in AP, then a b, a, £ b,,

no e

a, * b, ... are also in A.P.

Example 2: Find the general term and the eleventh term of the A.P. whose first term
and the common difference are 2 and —3 respectively. Also write its first four terms.
Solution: Here, a, =2,d=-3

We know that a, =a, +(n— 1)d
So a, =2+m-1)(-3)=2-3n+3
or a, =5-3n (1)
Thus, the general term of the 4.P. is 5 —3n
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Putting n =11 in (1), we have

a, =5-3(11)
=5-33=-28
We can find a,, a,, a, by putting n =2, 3, 4 in (i), that is,
a,=5-32)=-1
a,=5-33)=-4

a,=5-34)=-7
Hence, the first four terms of the sequence are: 2, -1, 4, —7.
Example 3:  If the 5™ term of an A.P. is 13 and 17" term is 49, find a, and a,, .

Solution: Given thata, =13 and a,, =49

Puttingn=51in a, = a, + (n—1)d, we have a, =a,+(5-1)d

a;=a,+4d
or 13=qa,+4d ..(1)
Also a,=a,+17-1)d
or 49 =qa, +16d
or 49 =(a,+4d)+12d
or 49 =13+12d by (i)

= 12d =36 = d=3
From (i), a, =13-4d =13-4(3)=1
Thus a; =1+(13-1)3=37 and
a,=1+(n-1)3=3n-2
Example 4: Find the number of terms in the A.P. ; if a, =3,d=7and a,=59
Solution: Using a, = a,+(n—1)d, we have
59=3+m—-1)x7 (+ a,=59,a, =3 andd=7)
or 56=n-1)x7=>m-1)=8=n=9
Thus, the terms in the A.P. are 9.
Example 5: If a, , =3n—11 find the n™ term of the sequence.
Solution: Replacing n by n + 2, we have
an+2-2=3(n+2)—11
an=3n+6-11

an=3n-5
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P~ EXERCISE 6.2 4

1. Find the common difference and write the next two terms of each arithmetic

sequence.
(i) 9,16,23,... (i) 5, 5+2,5+22,...

2. Write the first three terms of each arithmetic sequence, with given information.
(i) a,=2,d=13 (i) a, =12,d=-13

3. Finda,,,anda,, ifa,=4+3n

Find the indicated term of each of the following arithmetic sequence.
(i a=3,d=7,a,=14 @) 8,3,-2,...,a,
5. The 18" term of a sequence is 367. The 30" term of the sequence is 499. How
many term of this sequence are less than 1000?
Is 301 a term of the A.P. of the 5, 11, 17, ...?
If 2x, x + 8, 3x + 1 are in A.P., then find the value of x.
Which term of the A.P., 3, 8, 18, ... is 123.
Which term of the A.P., 30, 29.5, 29, 28.5, ... is the first negative term.
10. The 7" term and 21° terms of an A.P., are 37 and 107 respectively. Find the A.P.
and its 100" term.

! ! ) ! are in A.P., the show that azb _a-

a—c b—c b-a a-c b-a’
12.  How many numbers of three digits are divisible by 7?
13. Find the 8" term from the end of the A.P., 8, 11, 14, ..., 185.

A Sl e

o

1. If

10 10 10
14. Find the n™term of the progression (%j , (gj > (gj > --- . Is the progression

an A.P.? Is it infinite?

15. If the arithmetic progression 3, 10, 17, ... and 63, 65, 67, ... are such that their n™
terms are equal, then find the value of n.

16. If the p™ term of an A.P. is ¢ and the ¢™ term is p, prove that its nth term is

p+tq—n).
17. If l, l and l are in A.P., show that h = Jac .
a b c a+c
18. If l, l and l are in A.P., show that the common difference is “
a b c 2ac

19. If a,and a,denotes two different terms of an A.P., show that its ™ term is

ak+(n—k)(%}
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20. If a,,a,,a,,...,a, are positive and in A.P., prove that
1 N 1 . n—1
R AN N RN TS i e

21. If the roots of the equation (b—c)x*+(c—a)x+(a—b)=0 are equal. Show that

a, b, carein A.P.
22. [If the sides of a right-angled triangle are in A.P., find the ratio of its sides.

23. If the n'™ term of a progression is a linear expression in 7, then prove that this
progression is an A.P.

6.3 Arithmetic Mean (A.M.)

A number A4 is said to be the A.M. between the two numbers a and b if a, 4, b are in
A.P. If d is the common difference of this A.P.,then4 —a=dand b—- 4 =d.

Thus A—a=b-A .
DS If 4, 4), 4,, ..., A, are said to be n

or 2d=a+b A.Ms. between two numbers a and b, then
a+b a,A,,4,4,, ..., 4, barein A.P.
= A= 5

Example 6: Find three A.Ms. between +2 and 3+/2.
Solution: Let A4, 4,, A, be three A.Ms. between /2 and 34/2. Then,

V2, 4, 4y, Ay, 32 arein A.P.
Here a1:\/5, a5=3\/5 using as;=a,+(5-1)d or 32=+2+4d

22 2 1

d:— = —_— ——
4 2 f

Now 4 =a,+d = \/5-1- =

2+41_3
V22
AZ:A1+d:i L— =22

ﬁzT
44

|- %1~

1 5
A = A +d=22+——=""="
JE V22
Therefore, 2\/_ are the three A.Ms. between JE and 3\/_

55
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P~ EXERCISE 6.3 4

1. Find A.M. between the given numbers

(i) 2++3i,2-+/3i (i) (a+b),(a-b)
2. If6, 11, 16 are three A.Ms. between a and b, find a and b.

3. Insert five A.Ms. between \/5 and £

N

4.  The A.M. of two numbers is 7 and their product is 45. Find the numbers.

—a
, Where

5. If n arithmetic means are inserted between a and b, prove that d = ]
n—+

d is the common difference.
6. If 4 is the A.M. between a and b, prove that (a— A)2 +(4 —b)2 = %(a —b)2 :

n+l n+1

7. For what value of n, ———— is the A.M. between a and b. where a #b.

a"+b"
6.4 Series
The sum of the terms of a sequence is called the series of the corresponding sequence.

For example, 1 +2 +3 + ... + n is a finite series of first » natural numbers.
The sum of first n terms of series is denoted by S,.
We write, Sy =a1 t a2+ --- + an.
Here, S1=a
S =a1+a
Si=a1+ax+as
Sp=ai+ax+as + - + ayis known as n'" partial sum.
The sum of the terms of an arithmetic sequence is called an arithmetic series.
To develop a formula for the sum of any arithmetic series, consider
S =a+(a+d)+(a,+2d)+ .+ (£=2d)+({—d)+ L (where a,={)
S =L+(f-d)+({+2d)+ -+ (a,+2d)+(a,+d)+q,
Thus, 28 =(a,+£)+(a,+L)+(a,+O)+ -+ (q,+O)+(a,+£)+(a,+ 1)

=n(a, +1) [ We have n terms of (a, + €)]
n
Sn = E (al + f)
But, f=a+(n-1)d (Substitute £in S )

Thus, S, = g[a1 +a,+(n-1)d]= g[za1 +(n—1)d]
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Example 7: Find the sum of the first 100 RA%LIE S

positive integers. The sum S, of the first n terms of an
Solution: The seriesis 1 +2 +3 + ... + 100.

Since you can see that @, =1,a, =100 and

arithmetic series is given by
n n
. ) S =—[2a +(n=-1)d]or S =—(a+a,)
d =1, you can use either sum formula for this 2 2
arithmetic series.
Method-1 Method-2

Sn:g(a1+an) Sn:g[2a1+(n—l)d]

S0 = %(1 +100) | S, = %[2(1)“100—1)1]

S, = 50(101) S, = 50(101)
8,00 = 5050 8,00 = 5050

Example 8: Find the 19" term and the partial sum of 19 terms of the arithmetic series:

2+Z+ 5+E+...
2 2
Solution: Here, @, =2 andd = a,—q, :%
Using a, = a,+(n-1)d

a, = 2+(19—1)%

= 2+18(%j:2+27:29
. n
Using S, = E(al +a,)
1 19 589
So=—24+29)=—0C@)=—
=S¢ )= Bh==
Example 9: Find the arithmetic series if its fifth term is 19 and S, = a, +1.
Solution: Given that a; =19, that is,
a,+4d =19 (1)

Using the other given condition, we have

S, = %[251, +(4-Dd]=a,+1
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or 4a,+6d = a,+8d +1
3a,-1=2d
Substituting 2d = 3a, —1in (1), we have
a,+2Q3a,-1)=19
or 7a,=21 = a =3
From (i), we have,
4d =19-a,=19-3=16
= d=4
Thus, the seriesis3+7 +11 +15+19 + ...
Example 10: How many terms of the series -9 — 6 —3 + 0 + ... amounts to 66?
Solution: Here, a, =—9 andd =3 as -6 — (-9) =3.
Let S, =66

Using S, = %[Za1 +(n—-1)d], we have

66 = g[z(—9) +(n—-1)3]

or 132=n[3rn-21] = 44=nn-17)
or n—7n-44=0

1494176

2
_T£4225  T£15
2 2
But n cannot be negative in this case, so n = 11, that is, the sum of eleven terms amount
to 66.

Example 11: Find the first three terms of an arithmetic series in which a, =9, a, =105
and S, =741.

n=11,-4

Solution: Step — I: Since we know q,, @, and S, Step — II: Find d.
Use S, =2 (a, +a,) to find n. a,=a+(n-1)d
2 105=9+(13-1)d
741="(9+105) 96=12d
2 8=d

741=57n
13=n
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10.
1.

12.

13.

14.
15.

16.

Step — III: Use d to determine a, anda,.
a,=9+8=17, a, =17 + 8=25
The first three terms are 9, 17 and 25.

P~ EXERCISE 6.4 4

Sum the series:

() 34649+.+a, () 45+ 4a

V5 V5 '

Find S, for each arithmetic series:
(1) ar=4,n=25,a,~100 (i) a;=40,n=20,d=-3
(i) an=52,n=21,d=-4
Find a; for arithmetic series: d =8, n=19, S, =1786
How many terms of the series: 96 + 93 + 90 + ... amount to 1071.
If the three sides of a right-angled triangle of perimeter equal to 36¢cm are in A.P.
find them.
Sum the series
i) 3+5-7+9+11-13+15+17-19+ ... to 3n terms.
(i) 1+4-7+10+13-16+19+22—-25+ ... to 3n terms.
Find the sum of 20 terms of the series whose 7 term is 37 + 1.
The 5™ and 9™ term of an 4.P. are 11 and 17 respectively. Find the sum of 20
terms.
Obtain the sum of all integers in the first 1000 positive integers which are neither
divisible by 5 nor by 2.
The sum of 9 terms of an 4.P. is 171 and its eighth term is 31. Find the series.
The 5™ term of an arithmetic progression is 21 and the sum of first six terms is
90. Find the 18™ term.
The sum of three numbers in an A4.P. is 24 and their product is 440. Find the
numbers.
The first four terms of an A.P. are 2, 6, 10 and 14. Find the least number of terms
needed so that the sum of the terms is greater than 2000.
Find four numbers in 4.P. whose sum is 32 and the sum of whose squares is 276.
Find the five numbers in 4.P. whose sum is 25 and the sum of whose squares is
135.

1 1

If s , ! are in A.P. then show that a*, b*, ¢* are in A.P.
a+b c+a b+c
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17. The sum of the first four terms of an A.P. is 56. The sum of the last four terms is
112. If its first term is 11, then find number of terms.
18. The first term of an A.P. is a, the second term is b and the last term is ¢. show that

(b+c—2a)(c+a) .

2 ( b— a)
19. Show that the sum of n A.Ms. between a and b is n times the single A.M. between
them.

6.5 Geometric Progression (G.P.)

A geometric progression or geometric sequence is a sequence in which each term after
the first is found by multiplying the previous term by a nonzero constant » called
common ratio.

Like arithmetic progression, we can label the terms of a geometric sequence as

the sum of A.P. is

a,, a,, a, and so on, @, #0 . The n™ term is a, and the previous term is a, ,. So,

a : . o
a,=r(a, ). Thus, »r = —=-. That is, the common ratio can be found by dividing any
an—l
term by its previous term.

6.5.1 Rule for nth term of a G.P.

Each term after the first term is an » multiple of its preceding term. Thus, we have,

_ _ 2-1
a, =ar=a,r

— — _ 2 _ 3-1
a,=a,r =(ar)yr=ar” =ar

a,=ayr=(ar’)r=ar =ar"
4 — 230 1 | - "

' which is the general term of a G.P.

c'zn =ar"
6.5.2 Properties of G.P.

(1) Ifeachterm of a G.P. is multiplied or divided by the same non-zero number, then
the resulting sequence is also a G.P. i.e, if g, g,, €3, ..., &,, ... arein G.P. and kis a

non-zero number, then
(a) kg, kg,, kg, ..., kg, ,... are in G.P.

(b) 1,8, 8, & . arealsoinG.P.

k k k k
(i1)) The reciprocals of the term of a G.P. also form a G.P. i.e., if @, b, ¢ are in G.P.,

then l, l, 1 are also in G.P.

a b ¢
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(ii1) If each term of a G.P. be raised to the same power, the resulting numbers also
form a G.P. 1.e., ifa, b, c are in G.P., then a", b", ¢" are also in G.P.
(iv) Three numbers a, b, c are in G.P. if and only if »* = ac.

(v) Ifthe set of positive numbers a,, a,, a,,..., a are in G.P., then log a,, log a,,

o
log a,, ..., log a,, ... are also in A.P. and vice-versa.

(vi) Term by term multiplication or division of two G.Ps. are also in G.P. i.e.,

ifa, a,,a,...,a, and b, b,, b, ... ,b,, are in G.P. then ab,, a,b,, a;b,, ..., and

n’

ﬂ, &, &, ... are also in G.P.

bl bZ b3
Example 12: Find the eighth term of a geometric sequence for which @, =-3 and
r=-2.

Solution: Here, a,=-3,r=-2,n=38

n—1

a,=a,;r
a,=(=3)-(-2)"
ag = (=3)- (-128)
a, =384

Example 13: Write an equation for the nth term of the geometric sequence
3,12,48,192, ...
Solution: Here a,=3,r=4

n—1

a,=a;-r-
a,=3-4""
Example 14: Find the tenth term of a geometric sequence for which a, = 108 and r = 3.
Solution: Step 1: Find the value of q,. Step 2: Find a,.
Here,n=4, r=3, a, =108 Here,n=10, a,=4,r=3
a,=a-r"" a,=a;-r""'
a,=a-3"" a,=43""
108 =274, a,, =78,732
4=aq,
Example 15: Find the 5 term of the G.P., 3,6, 12, ...
Solution: Here a, =3, a, =6, a, =12, therefore, r = & _ é =2.

a 3
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Using a, =ar"" for n=5, we have
a;=ar " '=3-2"=3.2"=48

Example 16: Find a, if a, = 38 and a, _¢ ofa G.P.
27 729

Solution: To find a, we have to find a, and r.

Using  a,=ar"" (i)
_ 8 .
a,=ar''=ar’ , so ar = > (ii)
—64
and a=ar '=ar® , so ar®=—— iii
7 =4 I =g (iii)
64 3
N 6
Thus, a4 _ 729 _—8 or r3:(_2j a_7:al_’”3:r3
a, 8 27 3 a, ar
27
2 .
= r=— 3 (taking only real value of r)

8 . .. . .
Put 7° = ~% in (ii), to obtain q, that is,

g8 ) 8
a|l-— |=— = a=-1
27) 27

Now putting g, =—1 and r= _?2 in (1), we get,

an:(—l)(—gjn_ =(=DD" @ =(—1)”@n_ forn 21.

P~ EXERCISE 6.5 4

1. Find the 6™ term of the G.P.: -6, -3, _?3

2. Find the 8™ term of the sequence, 3, 32,33, ...

3.  The n™ terms of the sequences 1, 2,4, 8, ... and 256, 128, 64, ... are equal. Find
the value of n.

4.  Find the first five terms of each sequence described:

() a =243, r=% Gi) a =579, r=_%
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5.  Find the 12" term of 1 + 4, 2i, -2 + 24, ...
If the 4™ and 9™ term of a G.P. are 54 and 13122 respectively. Find the G.P. Also
find its general term.

7. 1Ifa,b,c,darein G.P., prove that:
(i) a-b,b—c,c—darein G.P.
() a’-b*,b>-c*, ¢’ —d’ arein G.P.
(i) a*+b*, b*+c*, ¢’ +d” arein G.P.

8. If(p+ g)"term of a G.P. be m and (p — ¢)™ term be n, then find the p™ term.
Find three consecutive numbers in G.P. whose sum is 26 and their product is 216.

10. The 3" term of a G.P. is the square of 1*! term. If the 2" term is 9 then find the 6™
term.

11. If l, % and ! are in G.P. Show that the common ratio is i\/g.
a c c
12. If the numbers 1, 4 and 3 are subtracted from three consecutive terms of an A.P.,
the resulting numbers are in G.P. Find the original numbers if their sum is 21.
13. If three consecutive numbers in A.P. are increased by 1, 4, 15 respectively, the
resulting numbers are in G.P. Find the original numbers if their sum is 6.

15. If p™ ¢™ terms of a G.P. are g and p respectively, show tha (p + ¢)® term is
1

(g7
16. Ifa,2a+2,3a+3, ... are in G.P., then find the fifth term.
6.6 Geometric Mean (G.M.)

A number G is said to be a geometric mean (G.M.) between two numbers a and b if a,
G, b are in G.P. Therefore,

E _2 WUER G, G,, G, ..., G are said to be n
a G G.Ms. between two numbers a and b if
— G* =ab a,G,G,, G, ..., G, barein G.P.

= G = i«/%
6.6.1 Relation Between A.M. and G.M.

If 4 and G are respectively A.M. and G.M. between two numbers a and b i.e.,

A:a+b and G :\/E, then

() A>Gifa#b (i) A=Gifa=b
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Example 17: Insert three G.Ms between 2 and % .
Solution: Let G,, G,, G, be three G.Ms. between 2 and % Therefore

1 . 1
2,G,G,, G, —arein G.P. Here aq,=2, a;=— andn =5.
2 2
using a,=ar""" we have
51 . 4 .
as=ar e, a;=ar (1)

Now substituting the values of a; and g, in (i) we have

1 1 .
—=2r* or r*=— ii
1 (i)
Taking square root of (ii), we get
r’= il
, 1 , 1.7 5
We have, r° =— or r'=——=— (s —-1=i")
2 2 2
1
= r==% or r=t= i

51
5

2 3
When rzﬁ, then G, =2 % _\/_ G, _2(%J =1, G,=2 % :%
-1 - B 1Y 1Y ]
When FZE’ then G, =2 E =— G,=2 E =1, G,=2 E :_E
. . 2 . 3 .
When rzﬁ, then G, =2 ﬁ —\/7 G, —2(%) -1, G,=2 ﬁ :_ﬁ
. . L \2 3 .
- —i —i —i i
When r=-——, then G =2| — |=—2i,G,=2| = | ==1,G. =2| = | =—
N R W : (ﬁj N WS R

Wl The real values of 7 are usually taken but here other cases are considered to widen the outlook
of the students.

P~ EXERCISE 6.6 .4

1. Find G.M. between:
(i) —2and8 (i1)) —2iand 8i (ii1)) 6 and 9

2. Insert four real geometric means between 3 and 96.

3. If both x and y are positive distinct real numbers, show that the geometric mean
between x and y is less than their arithmetic mean.
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n n

a' +b

an—l + bn—l

5.  The A.M. of two positive integral numbers exceeds their (positive) G.M. by 2 and

4.  For what value of n, is the positive geometric mean between a and b?

their sum is 20, find the numbers.

6. The A.M. between two numbers is 5 and their (positive) G.M. is 4. Find the
numbers.

7. The arithmetic mean between two positive numbers a and b is double their

geometric mean. Prove that a: b =2+ J3:2-43
8. If one geometric mean G and two arithmetic means p and g be inserted between

two positive numbers, show that G* = (2p - q)( 2q - p)

6.7 Geometric Series

Suppose you e-mail an Islamic quote to three friends on Monday. Each of those friends
send it to three of their friends on Tuesday. Each person who receives the quote on
Tuesday sends it to three more people on Wednesday and so on.

E-Mail L&

@ - Monday ................. o 9, =

@ --- Tuesday -------- pe. % 2, ) e b, 4 b pe

@--W&:dnesday ceeedbabah MAkAk JNALAE ARALAL AR dLARAL ARAGAE A A0 A G a0 a0

Notice that every day, the number of people who read your Islamic quote is three times
the number that read it the day before. By Sunday, the number of people, including
yourself, who have read the quote is 1 +3 +9 + 27 + 81 + 243 + 729 + 2187 or 3280.
The numbers 1, 3, 9, 27, 81, 243, 729 and 2187 form a geometric sequence in which
a, =1 and r = 3. The indicated sum of the numbers in the sequence, 1 +3 + 9 + 27 +

81 +243 + 729 + 2187 is called a geometric series.

. . . a(-r"
The sum of a geometric progression can be written as: S, = % , r#l1
—-r
To develop a formula for the sum of any geometric series, consider
2 n-3 n-2 n—1 :
S =a+ar+ar +.-+ar"”+ar'" " +ar (1)
1S, = ar+ar’+-+ar' +ar'  +ar' +ar” (i1)
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Subtracting (ii) from (i), we get

Sn_rSn =a1_arn Ifr=1,thenSn=na1

S,(1-r)=a,(1-r")
_ a,(l1-r")

1-r

S

n

sr#1

Example 18: Find the sum of n terms of the geometric series if a, = (—3)(2j .

5
Solution: We can write (—3) (%j as:

I ) e
LT

n—1
Identifying (—gj(%j with a" "', we have q, = —g and r= %

szﬂ
Thus, 5, =40z 2L W

! 1-r 2

()2

P~ EXERCISE 6.7 4

1. Find the sum of first 15 terms of the geometric sequence 1, %, é

2. The 3" term of a G.P. is 16 and the 6™ term is —128. Find the first term and the
sum of the first seven terms.
3. Sum to n terms the series:

(i 02+0.22+0.222+--- (i) 3+33+333+---
4.  Sum to n terms the series

(i) I+@+b)+(@+ab+b)+(a+a’b+ab®+b)+ -
() r+(+R2+A+k+E)r + -
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5. Sum the series 2 + (1 —i) + [lj + -+ to 8 terms.
i

6. Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from

.1 : :
(n+ 1" to 2n)™" term is — , where r is the common ratio of G.P.
B

6.8 Arithmetico-Geometric Progression (A.G.P.)
Suppose a,, a,, as, ... , a,, ...isan A.P.,and b, b,, b;, ... , b,, ... is a G.P. then the

s Ypo

sequence formed by multiplying the corresponding terms of A.P. and G.P, thatis, a,b,,

a,b,, asbs, ... ,a,b,, ... 1s said to be an arithmetico-geometric sequence.
Consider an A.P.,a,a+d, a+2d, ..., {a+ (n—1)d} and a G.P., b, br, br*, ..., br" !
where r#1.
Multiplying the corresponding terms of A.P. and G.P., we get an arithmetico-
geometric sequence
ab, (a + d)br, (a +2d)br?, ..., {a+ (n— Dd}br" !
The n'™ term of arithmetico-geometric sequence is product of #" term of A.P. and n™
term of G.P. Thus, n'" term of such sequence has the form
{a+(n-Ddybr !
6.8.1 Arithmetico-Geometric Series
Sum of the terms of arithmetico-geometric sequence is called arithmetico-geometric
series. Thus, arithmetico-geometric series has the form
ab+ (a+d)br+ (a+2d)br* + -+ {a+ (n— d}br" !
Sum of nth Terms of Arithmetico-Geometric Series
Let S,=ab+ (a+dbr+ (a2d)br*+ -, +[a+ (n— 1)d]br" ! (i)
Then rS, = abr+ (a+dybr* + -+ + [a+ (n = 2)d]br" ' + [a + (n — 1)d]br" (ii)
Subtracting (ii) from (i), we get
(1-r)S,=ab+ [dbr+dbr*+ --- +dbr"~']—[a+ (n— 1)d]br"

n—1
:ab+m_[a+(n_1)d]brn
—r
—ap 4 BT A - Dl
I-r 1-r
s = ab N dbrz_ dbr 2_[a+(n—l)a’]br (iif)
I-r (A-r)y ({A-r) 1-r

which is the required sum of the n terms of arithmetico-geometric series.
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6.8.2 Sum to Infinity of Arithmetico-Geometric Series

If|r] <1, then 7" — 0 and n#" — 0asn — o

Therefore, (iii) reduces to S, = ab + dbr 5
I-r (-7r)

which is the required sum to infinity of arithmetico-geometric series.

Example 19:  Sum the series upto n terms: 2-1 +3-2+4-4 + 5-8+ ...

Solution: LetS,=21+3-2+422+5:2% ... to n terms
nth term of the A.P.,2,3,4,5, ...isa;, +(n—1)d =2+ (n—-1)(1)
=2+n-1
=n+1
nth term of the G.P., 1,2,2% 2%, ...isa/” '=12""1=2""1
So, §,=21+32+422+52+ . +(n+1)2""! (1)
Multiplying both sides by common ratio of G.P., we get
28, =22+322+423+ 520+ .+ m)2" '+ (n+1)2" (ii)

Subtracting (ii) from (i), we get
S —28,=21+(3-2)2+(@4-3)22+(5-4) 2+ .. +(n+1-n2" ' —(n+1)2"
-8 =21+12+1-22+12°+ ... +12" ' —(n+1)2"
—8, =2+ {2+22423+ 42" —(n+1)2"
202" =)

-8=2+ o —(n+1)-2"
-8 =2+2"-2-n2"-2"
-§, =-n2"
S, =n2"
Example 20:  Sum the series upto 7 terms: 3-1 +4-2 +5-22 + 6:2° + ..
Solution: LetS, =31 +4-2+5224+623 ...
nth term of the A.P.,3,4,5,6, ...isa, +(n—1)d =3 +(n—1)(1)
=3+n-1
=n+2
nth term of the G.P., 1,2,2% 2%, ... isa/” ' =1(2)" '=2"""
So, 8§,=31+42+522+62+...+(n+1)2""! (i)

Multiplying both sides by common ratio of G.P., we get
28 =32+422+52+ 4+ (m+ 12"+ (n+1)2" (ii)
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Subtracting (ii) from (i), we get

S 28 =32+(@4-3)2+(5-4)22+(6-5 2+ +(m+2-n— 12" —(n+2)2"
=S =3 1+12+122+1-2+ . +1:2"" 1~ (n+2)2"
-8 =3+ {2+22+2%+ 42" —(n+1)2"
g, =3+ 227D

2-1

-8 =3+2"-2-n2"-22"
—8 =14+2"—n2"-22"=1+(1-n-2)2"
—S =1+(-n-1)2"
S =—1+(n+1)2"

—(n+2)2"

Example 21: Sum the series upto n terms: 2+ ﬂJr é+ i+

27

Solution: LetS, = 2+ﬂ+§+i+... to n terms
3 9 27

nth term of the A.P.,2,4,6,8,...i1s =2+ (n—1)(2)

=2+2n—-2=2n
n—1

nth term of the G.P., 1, 1, l, L, .18 (1)(1J = 1]
39 27 3 3"

So, Sn=2+—+§+i 2’: (i)

27 3"
1 2 4 6 2n—2 2n .
P P n—1 n (11)
3 3 9 27 3 3

Subtracting (ii) from (1), we get
@_l}$=2+4—2+6—4+8—6+ +2n—bH2 2n

3 9 27 3! 3"
zSn:2+ 2+g+£+...+ 2_1 _2n
3 13 9 27 3" 3"

- .

-G
25, 0,2 ) ) 2
3 1 3"

3
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n—1 n
i) o4
3 3 3

n—1 n
5,221 -a(1)
2 2\3 3

Example 22: Find the sum to n terms of the series: 1 + 2x + 3x* + 4x> + ... where
x # 1. If |x| < 1, sum the series to infinity.
Solution:  LetS,=1+2x+3x*+4x’ + ... +nx""! ..(0)
xSn=x+2x2+3x3+...+(n—1)x”’1+nx” ...(11)
Subtracting (ii) from (i), we get
(1-x8, =l+x+x>+x>+. . +x" ' —nx"
l _ n
a-x)_
I-x
I-x"—n(l1-x)x"

1—x

1—x" —nx" + nx""

1-x
_ n n+l
(1-%)S, = I-(n+1)x" +nx
I-x
1—(n+1)x" +nx"!
Sn - 2
(1-x)
If x| <1, thenx” - 0asn — o
Soo !

T (—x)




10.

1.

P~ EXERCISE 6.8 4

Find the 8™ term of the arithmetico-geometric sequence, where the arithmetic part

is 1,4, 7, ... and the geometric part is 5, 10, 20, ...

Find the n'™ term of the arithmetic-geometric sequence, where the arithmetic part
is 3,7, 11, ... and the geometric part is 2, 6,18, ...

Consider the arithmetico-geometric sequence defined by arithmetic part:

a

n+l1

. 1 "o
=2n+5 and geometric part:b, , = 5(_3) . Find the n™ term and the sum of

first three terms of the arithmetico-geometric sequence.
Sum to n terms the following series:

() 12+34+58+716+... (i) 23+432+633+83%+ ...
5 8 11 . 3 5 7
m) 2+—+—+—+... w) l+=—+—+—+...
( ) 4 42 43 ( ) 5 52 53
7 10
v) l+—+—+—
N 27

Sum the following infinite series:

(1) 1+§+§+Z+... (i1) 2+§+§+1—1+...
2 4 8 3 9 27

1 1 1 1

Show that 22- 44 - 88- 1616 ...c0 =4
Show that /4 - /16 - /64 - 19256 -.-c0 =16

Sum to 7 terms the series 2+ 4x+ 6x> +8x° +... where x # 1

n+1l _(2n+1Y  (2n+1Y
Find the sum to » terms of the series: ! +3 " +5 " +
2n—1 2n—1 2n—1

2
Prove that: 1+2(1+lj+3(1+—1) + ... to n terms = n?
n n

Sum the series to 7 terms 2+ 5x+8x” +11x” +-.. and deduce the sum to infinity

if|x|<1.

6.9 Harmonic Progression (H.P.)
A sequence of numbers is called a Harmonic Sequence or Harmonic Progression if the

1

. . o . . 11 )
reciprocals of its terms are in arithmetic progression. The sequence 1, 357 s a

harmonic sequence since their reciprocals 1, 3, 5, 7 are in A.P.
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Remember that the reciprocal of zero is not defined, so zero cannot be the term of a
harmonic sequence.
The general form of a harmonic sequence is taken as:
11 , ! , ... whose n" term is _
a, a+d a+2d a,+(n-1)d
Example 23: Find the ™ and 8" terms of H.P. : %, %, é,
Solution: The reciprocals of the terms of the sequence,

1 11

—, =, =, . are 2,5,8, ...

258
The numbers 2, 5,8, ... arein A.P., So

a =2andd=5-2=3

Putting these values in a, = a,+ (n—1)d, we have

a, =2+ (n-1)3
=3n —1
Thus, the n™ term of the given sequence = L = ! and substituting n = 8 in )
a, 3n-1 3n—-1
we get the 8" term of the given H.P. which is L
3x8-1 23

Alternatively, a, of the A.P. =a, +(8-1)d
=2+73)=23

Thus, the 8™ term of the given H.P. = L

23
Example 24: If the 4™ term and 7" term of the H.P. are % and % respectively, find
the sequence.

Solution: Since the 4" term of the H.P. = % and its 7" term = %, therefore the 4™

and 7™ terms of the corresponding A.P. are % and 2—25 respectively.

Now taking a,, the first term and d, the common difference of the corresponding 4. P.,

we have,

a,+3d =g (i) and  a +6d= 22—5 (ii)
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Subtracting (i) from (ii), gives

3d=§—2=6 = d=2
2 2
From (i), we get
foBsg B L
2 2 2
1 5
Thus, a, ofthe A.P.=a+d =—+2=—
2 2
and a, ofthe A.P. = a,+2d =%+2(2)
2 2
Hence the required H.P. is z, z, z, E’
1 59 13

6.9.1 Harmonic Mean (H.M.)

A number H is said to be the harmonic mean (H.M.) between two numbers a and b if
a, H, b are in H.P.

Let a, b be the two numbers and H be their H.M. Then l, % , % are in A.P.
a
1 N 1 b+a
1 4 b ab a+b
Therefore, — = = = .
H 2 2 2ab
and H= 2ab
a+b

For example, H.M. between 3 and 7 is
2x3x7 2x21 21
347 10 5
6.9.2 n Harmonic Means between two Numbers
H,H, H,,--, H, are called n harmonic means (H.Ms.) between a and b if

a, H,H,, H,, ..., H ,barein H.P. If we want to insert » H.Ms., between a and b, we

first find n A.Ms A, 4,, ..., A, between 1 and %, then take their reciprocals to get n
a

H.Ms. between a and b, that is, i, I

Al A2’ .

s AL will be the required » H.Ms. between

n

a and b.




Example 25: Find three harmonic means between 1 and % .

Solution: Let A4,, 4,, A, be three A.Ms. between 5 and 17, that is,
5, A4, 4,, A;, 17 are in A.P.

Using a, = a,+(n-1)d,we get
17 =5+(5-1)d (v as=17 and a,=Y5)
4d =12
= d=3
Thus, A =5+3=8, 4,=5+23)=11 and 4,=5+33)=14

Hence 1, i, 1 are the required harmonic means.
8 11 14

P~ EXERCISE 6.9 4

1.  Find the 9" term of the following harmonic sequences:

. 1 11 . -1 -1
1 — =, =, ... n —,—, —1,..
() 357 ) 53
2. Insert five harmonic means between the following given numbers:
N =2 2 | 1
1) — and — 1) — and —
2 5 13 @) 4 24

3.  The first term of an H.P. is —% and the fifth term is % Find its 9™ term.

4. If5 is the harmonic mean between 2 and b, find b.

5.  Ifthe numbers l, : and : are in harmonic sequence, find k.
2k+1 4k -1

n+l n+l

6. Find n so that aﬂ—” may be H.M. between a and b.
a'+

7. If a*, b* and ¢*are in A.P. show that a + b, ¢ + a and b + ¢ are in H.P.

8. If the H.M. and A.M. between two numbers are 4 and % respectively, find the
numbers.

9. If the (positive) G.M. and H.M. between two numbers are 4 and ?, find the
numbers.

b+c—a c+a-b a+b—c . .
, , are in A.P., show that a, b, ¢ are in H.P.

a b c

10. If
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11. Ifa, b, c,dare in H.P., show that 3(a—b)(c—d)=(b—c)la—d).
12. Ifbetween any two numbers there are inserted two A.Ms. 41, 42, two G.Ms. G,
A+A4, H +H,
12 - fﬂ[{2 ‘
13. The H.M. of two numbers is 4. The A.M., 4 and G.M., G satisfy the relation
24 + G?>=27. Find the numbers.
14. First three of the four numbers a, b, ¢, d are in A.P., and the next three are in H.P.,
show that ad = bc.
15. Ifa, b, c are in G.P., show that log, x,log, x, log_xare in H.P.
16. Ifa, b, c are in H.P., show that
Q) a—-b _a

.. 2
P (i1) (a c) —(a+c)(a 2b+c).
17. If2+x,5+xand9 + x are in H.P., find the value of x.
18. If the roots of the equation a(b — c)x* + b(c — a)x + c(a — b) = 0 are equal, prove
that a, b, ¢ are in H.P.

G> and two H.Ms. H1, H»>; show that

6.10 Miscellaneous Series

The Greek letter X(sigma) is used to denote sums of different types. For example, the

n
notation Zai is used to express the suma, +a,,,+a,,,+..+a, and the sum

i=m

m+2

expression 1 +3 + 5+ ... to n terms is written asz (2k —1), where 2k — 1 is the k™
k=1

term of the sum and £ is called the index of summation. “1” and » are called the lower
limit and upper limit of summation respectively.

The sum of the first # natural numbers, the sum of squares of the first #» natural numbers and
the sum of the cubes of the first # natural numbers are expressed in sigma notation as:

14243+ 4n=) k; P+22 43+ 40’ =) K’ ;P42 +3+ 40’ =) kK
k=1 k=1 k=1

We evaluate Z [£" —(k—1)"] for any positive integer m and shall use this result to
k=1

find out formulae for three expressions stated above.

Zn:[km —(k=1)"]=(1"=0") + (2" =1")+ (3" =2") + -~

k=1

+[(n-D)"-(m-2)"]+[n"—(n=1)"]=n"
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n
ie., z [(k" —(k-D)"]=n" Properties of Summation:

@@ Zn:(ak +bk)=iak+zn:bk

If m=1, then ) [(k'—(k-1)']=n" ie, D 1=n
k=t k=t (ii) Zaak:aZak

If m=2,then Y| & ~(k~1)" |=n’
k=1
To Find the Formulae for the Sums
i Dk (i) DK (i) D K
k=1 k=1 k=1
(i) We know that (k—1)> =k’ —2k+1 and this identity can be written as:

K- (k1) =2k -1 (A)

Taking summation on both sides of (A) from k=1 to n, we have

S -(k-1 = k1)

ie., n*=2>k-n ¢ Y l=n)
k= k=1
or 22 k=n’+n
Thus z g= 2
Similarly, we can prove easily
) k- n(n+1)2n+1) (i) Z P {n(n+l)—|
k=1 6 J
Example 26: Find the sum of the series 1’ +3° + 5 +... to n terms.
Solution: T, = (2k-1)° (o 1+2(k=1)=2k-1)

=8k’ —12k*+ 6k —1
Let S, denote the sum of n terms of the given series, then

5, =31,
k=1

or  S,=Y (8k’—12k*+6k—1)
k=1
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=8Y K —12) kP +6> k-1
k=1 k=1 k= k=1

1

_ 8[n(n+l)|—|2_lz[n(n+1)(2n+l)l—|+6{n(n+l)l—|_n
2 ) | 2

=2n"(n+1)°" =2n(n+D)Q2n+1)+3n(n+1)—n

=2n°(n* +2n+1)=2nQ2n* +3n+1)+n(3n+3)—n

=2n[(n’ +2n° + n)— (2n*> +3n+1)]+nBn+3-1)

=2n[(n’ = 2n—1)+n3n+2)

=2n(n’ —2n—-1)+n3n+2)

=n[2n’ —4n—2+3n+2]

=n[2n’ —n] = n[n(2n* -1)]

=n’[2n" —1]

Example 27: Find the sum of n terms of series whose n™ terms is n’ + %nz +%n +1.

Solution: Given that

Tn:n3+3n2+ln+1
2 2
3.3,2, 1
Thus 7T, =k’+=k"+—=k+1
2 2
(3,321
and S, =) | E+>k’+—k+1
-1 22
n : 3 n B 1 7 n
=Y B+ =D k+1
k=1 2i0 2i3 k=1

B n*(n+1)> +§>< n(n+1)(2n+l)+lx[n(n+l)—|+n
4 2 6 2 2 U

:Z[n(nz+2n+l)+(2n2+3n+1)+(n+1)+4]

:Z(if+2n2+n+2n2+3n+1+n+1+4)

=%(n3+4n2+5n+6)
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Simple Interest on Loan (Arithmetic Sequence with Particular Term)

Example 29: To buy furniture for a new apartment Tayyab borrowed Rs. 50,000 at 8%
simple interest for 11 years. How much interest will he pay?

Solution: Since 8% is the yearly interest rate, we have

Interest after one year = Rs. 50,000 x % x]1=Rs. 4000

Interest after two years = Rs. 50,000 x % x 2=Rs. 8000
Therefore, we have the A.P.
4000, 8000, 12000, ...
Here, a, = 4000, a, = 8000, d = a, —a, = 4000, n = 11
Using the formula
a,=a,+n-1)d
a;, =4000 + (11 — 1)(4000)
= 4000 + 10(4000)
= 4000 + 40000
= Rs. 44000
Thus, Tayyab will pay a total interest of Rs. 44000 on borrowed amount of Rs 50,000
after 11 years.
Compound Interest on Loan (Geometric Sequence with Particular Term)
Example 30: Amna invests Rs. 200000 at 5% interest compounded annually. What
total amount will she get after 10 years?
Solution: Let the principal amount be P. Then,

The interest for the first year = P x % = P(0.05)

The total amount after first year = P + P(0.05) = P(1 + 0.05)
The interest for the second year = P(1 + 0.05) x 0.05
The total amount after second year = P(1 + 0.05) + P(1 + 0.05) x 0.05
= P(1 +0.05)(1 +0.05)
= P(1 +0.05)?
Similarly, the total amount after third year = P(1 + 0.05)?
Thus, we have sequence of amounts
P(1.05), P(1.05)?, P(1.05)*, ...
which is clearly a G.P., with
a,=P(1.05),r=1.05,n=10,a,,=?
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Using the geometric sequence formula
a,=ar!
ayp = aqr 10t

= P(1.05) x (1.05)°

= (200000)(1.05)"° + P =200000

=(200000)(1.62889)

=325778.92
Thus, the total amount Amna will get after 10 years will be Rs. 325778.92
Grid Column Distribution (Arithmetic Series Sum of Terms)
Example 31: A web designer is using a 12-column grid system where each column
increases in width by 10px from the previous one. The first column width is 50px wide.
Find the total width occupied by all 12 columns.
Solution: This follows an arithmetic series with:

First term = ¢, = 50, Common difference = 10

Number of terms =n =12
Using the formula for the sum of an arithmetic series:

S, = %[2a1+(n—l)d]

12 = 2 [2(50) + (12 1)(10)]
= 6[100 + 110] = 6 [210]
= 1260px

Thus, the total width of all 12 columns is 1260px.
Example 32: Motor Vehicle Leasing Using Arithmetic Sequence
A company leases a motor vehicle with the following terms:
e  The first monthly payment is Rs. 15,000
e  Each subsequent payment increases by Rs. 500 due to inflation adjustments.
e  The lease term is 24 months.
Find:
(i) What is the payment in the 24™ month?
(i1)) What is the total amount paid over 24 months?
(111) If the company can only afford to pay a total of Rs. 400,000, can they
complete the 24-months lease?
(iv) Find maximum months #n such that total, payment S, < 400,000.
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Solution: Given:
First term = a, = 15000

Common difference = d = 500
Number of terms = n = 24
(i) Payment in 24" month:
Using the formula

a,=a, +(n—-1)d
a,, = 15000 + (24 — 1)(500)
= 15000 + 23 x 500
=15000 + 11500 = Rs. 26500
(i1). Total payment over 24 months using the formula

n
S =—(a +a
n 2(n n)

= % (15000 + 26500) = 12(41500) = Rs. 498000

(ii1)) Can the company afford the lease? No. Total payments (Rs. 498000) exceed the
budget of Rs. 400,000 by Rs. 98,000.

(iv) Using: S, = g[2a1 +(n—1)d]< 400,000
Substituting the values:
g [2(15000) + (1 — 1)(500)] < 400,000

n [15000 + 2507 — 250] < 400,000
n(250n + 14750) < 400,000
250mn% + 14750n — 400000 < 0
n*+ 591 —1600<0

Associated equation is n° +597—1600= 0

L 59% J(59)> —4(1)(~1600)

2(1)
-59+994
n = —_—
2
-59-994 -59+99.4
n= , n=
2 2

n=-792,n=202
Clearly n = 20 satisfy the inequality.
So, n =20 is the maximum months such that payment S, <400,000.
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P EXERCISE 6.11 .4

1. A sum of Rs.10400 is paid off in 40 instalment such that each instalment is Rs.10
more than the preceding instalment. Calculate the value of the first instalment.

2. Aninvestor invests Rs. 150000 at an annual compound interest rate of 6% for 8
years. Find the total amount will he get after 8 years.

3. The population of a town 1s 4084101 at present and five years ago it was 3200000.
Find its rate of increase if it increased geometrically.

4.  Determine the total worth of a yearly Rs. 5000 investment after 20 years if the
interest rate is 5% compounded annually.

5. A water tank develops a leak. Each week, the tank loses 5 gallons of water due to
the leak. Initially, the tank is full and container 2000 gallons.

(a) How many gallons are in the tank 20 weeks later?
(b) How many weeks until the tank is half-full?
(c) How many weeks until the tank is empty?

6. A drug company has manufactured 7 million doses of a vaccine to date. They
promise additional production at a rate of 1.4 million doses/month over the next
year.

(a) How many doses of the vaccine, in total, will have been produced after a
year?
(b) The general term a, describes the total number of doses of the vaccine
produced. Describe the meaning of the variable n in the context of this
problem. Find the general term a,
(¢) Find the value of ai, and interpret its meaning in words.
7. Atatoll booth, the number of vehicles passing through during the first minute
is 100. Due to road congestion, each minute only 80% of the vehicles from the
previous minute manage to pass.
(a) Represent the number of vehicles passing each minute as a sequence.
(b) Find the total number of vehicles that pass through in 15 minutes.
(c) What is the maximum number of vehicles that can pass in the long run (as
time ¢ —o0)
8. Asum ofRs. 5000 is inverted at 8% simple interest per year. Calculate the interest
at the end of each year. Do these interests form an A.P.? If so find the interest at
the end of 20 years making use of this fact.
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9.

10.

11.

12.

13.

14.

A machine is purchased for Rs.20,000. Depreciates at 6% per annum for the first
four years and after that 8% per annum for the next six years. Depreciation being
calculated on diminishing value. Find the value of the machine after a period of
10 years.

Two cars start together in the same direction from the same place. The first goes
with uniform speed of 20km/h. The second goes at a speed of 12km/h in the first
hour and increase the speed by 1 km/h each succeeding hour. After how many
hours will the second car overtake the first car if both cars go non-stop?

150 workers were engaged to finish a piece of work in a certain number of days.
Five workers dropped the second day, five more workers dropped the third day
and so on. It takes 10 more days to finish the work now. Find the number of days
in which the work was completed.

A radioactive product has a half life of 5 years. If the radioactivity level is 68
microcuries after 20 years. Determine the original level of radioactivity.

An object moving in a line is given an initial velocity of 4.5 m/s and a constant
acceleration of 2.5 m/s*>. How long will it take the object to reach a velocity of
20m/s?

In an integrated circuit with an initial current of 1080 mA4, the temperature in the



Permutation and
Combination

INTRODUCTION

In our daily life, permutation and History
combination play vital role in counting Augustin Louis Cauchy
total number of possibilities, in (1789 — 185.7) is the father
arrangements and selections of objects O T A,

or things. Permutation and combination

are used in many fields of sciences. For ) .
Blaise Pascal and Pierre

example,
o . de Fermat (1607-1665)
In probablh.ty tbeory, permutation e g ks ) SIS
and combination are used to the combinations of
compute how many times an objects.

event occurs in various scenarios
and used to estimate the odds of
winning a lottery. Pascal and Leibniz are
. In biology, these are used to ﬁnd the founder of modern
out the total numbers of possible combinatorics.
DNA sequences. . '
. In computer science, these are used to count the possible number of passwords of
a given length by using some specific characteristics.
. Moreover, these are the important parts of many encryption algorithms to ensure
the privacy and integrity of a data set.

7.1 Fundamental Principle of Counting
Danish wants to prepare invitation cards of 5 different

colours (red, blue, green, orange and yellow) by

Make a tree diagram and find
how many cards can Danish
make?

changing any of 3 shapes (circle, square and rectangle).
How many cards can Danish make?

The problem is to count the total number of ways in
which Danish can make cards. One way to find the solution is by making tree diagram.
Let us discuss another scenario: Danish’s father wants to buy a table and has asked his
son to help him decide. He narrowed down his options for manufacturer, types of
material (wood, plastic, glass and marble) and types of shape (circle, square and
rectangle). Find the total number of table choices from the above options.

Again the problem is to count the total number of ways in which Danish’s father can
choose a table.
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1 Way: By making tree diagram.

Plastic Marble

| Square | |Rectangle| | Square | |Rectangle| | Square | |Rectangle| | Square | |Rectangle|

From tree diagram, it is clearer there are 12 choices for Danish’s father to buy a table
with one type of material and one type of shape.

2" Way: By multiplying, Danish’s father can find the total number of table choices to
buy a table with one kind of material and shape.

Total number of table choices = Total types of material x Total types of shape

=4 x 3 =12 choices

These examples show that when making a choice involving multiple stages or
categories, we can find the total number of outcomes by multiplying the number of

options at each stage.

Statement

Suppose 4 and B are two events, the event “4” occurs in “m” different ways, and the
event “B” occurs in “n” different ways then the total number of ways that the two events
together can occur is the product of “m” and “n”.

Total number of ways = mn
Proof: Let4 = {a, a,,a, --- ,a,} and B={b,, b,, bs, --- , b,}. Let P denotes the event
that both events A and B occur together then P[(a,, bj): a,e A, bj eB 1<i<m, 1<)

<n} =4 x B. Hence the number of ways in which both events 4 and B can occur is the
number of elements in 4 x B which is mn.

This principle can be extended to three or more events. For instance, if event 4 can
occur in m ways, event B can occur in n ways and
event C can occur in k£ ways, the number of ways If three dice are rolled together, how
that three events can occur all together is the Many total numbers of ways occur?

product of m, n and £.
Total number of ways =m x n x k

Factorial (!)
Suppose there are four chairs to be occupied by four ~ The factorial notation (1) was
students and we are interested in counting all the ntroduced by Christian Kramp

- the student be seated (1760-1826) in 1808
possible ways the s e.n § can be seate a This notation is frequently used to
To occupy the first chair there are 4 options. For the  solve permutation and combination. |
second chair, only 3 students remain, so there are 3

options. Similarly, for the third and fourth chairs, there are 2 and 1 options respectively.
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In this way, we have to perform four independent events with 4, 3, 2, and 1 options
respectively.

By the Fundamental Principle of Counting, the total number of ways to occupy all
the chairs is 4.3.2.1 =24

Such problems frequently occur in daily life, where we to multiply the first n natural
numbers: 1,2, 3, ---, n.

We call this product the factorial of n and denote it by n! Or |n, thus for a natural
number #z:

n!'=|n=nn-1)(n-2)---3.2.1

For some reason we also define 0! = 1. In general if n is a non-negative integer, then
its factorial is denoted and defined as

nl=|n = 1 if n=0
' n(n-1)(n-2)..32.1 if n>1

For example, =1

21=2.1=2 .
31=321=6 Can you find out — ?
|
41=432.1=24 3!
5!=5432.1=120
6!=6.54.3.2.1=720
It can be easily observed that
n!=nn-1)! for n>1
8! 9!
Example 1: Evaluate — Example 3: Evaluate ——
6! 6!3!
8! 8.7.6.5432.1
Solution: — = 7—256 Solution: ! _ 0876 84
6! 6.5.4.3.2.1 6! 3! 6!(3.2.1)
Example 2: write 8.7.6.5 in the 91 9876543
factorial form. Cresasal s 6!31 65432131
Solution: 8.7.6.5= ————=— !
uti 1301 a0 9! _9.87.6.543.2.1 _g4
6!3! 6.5432.132.1

P~ EXERCISE 7.1 4

1. Let us make paratha roll. We can choose our fillings from the following:

Meat: Chicken or beef Vegetable: Onions, tomatoes or cucumber
Sauce: Mayo or Chutney
How many different kinds of rolls can we make?
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2. Suppose we have 3 universities, and each offers 4 careers. Use a tree diagram to
figure out how many possible career paths you can take.
3. Evaluate each of the following:

10! 12!
. | .. | ... 10! 121
1 7 (1) 9! (111) al (1v) o
9! . 5! ... 10! o 121
NETET RRNEYERT T TR TR
! ! !
(ix) _ 127 (x) 20 (xi) 8 (xii) 6!.01.2!
31(12-3)! 20!(20-20)! 0!
4.  Write each of the following in the factorial form:
(i) 8.7.6.5 (i) 15.14.13.12.11 (iii) 19.18.17.16
. 11.10.9.8.7 10.9.8.7.6 .. 50.49.48.47
(V) ———— ™ 5T (Vi) —(——F
54 54.3.2.1 54321
(vil) n(n— 1)(n—2) (n—3) (viil) (n +2)(n+ 1)(n)(n - 1)
(ix) 2+ D) ) - Dn—-2) ... (n—r+2)

54321
7.2 Permutation
One important application of the fundamental principle of counting is to determine the
number of ways that objects can be arranged in order.
Definition: An arrangement of all or part of set of objects in a specific order is called
a permutation. Number of permutations of (< n) objects taken from a set of n objects
is written as "P. or P(n, r).
n!
" (n-r)!
According to fundamental principle of counting:
(i) Three books of mathematics for grades 1, 2 and 3 can be
arranged in a row taken all at a time (If books are distinct)
nPr — 3P3 von=r
3! 3!
T (3-3) 0!
=31=3.2.1=6 ways
(1)  Number of ways of writing the letters of the WORD taken all §
at a time

n

when r<n

0'=1

COCICIE)

ooa/aa/nf

oon/o/aa
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"P = 4P4 von=r n = Total number of things/objects
r = The number of selected things / objects

41 4
T (4-4)! 0!

=41=43.2.1=24 ways

Challenge! Do you know!

Can you make total number of In 1974, “Erno Rubik” invented a popular

permutations for the “WORD” puzzle, each turn of the puzzle shows a

pictorially? permutation of the different colours. The
name of this puzzle is “Rubik’s Cube”.

- 0l=1

n!
(n—r)!
Proof: As there are n different objects to fill up »places. So, the first place can be
filled in n ways. Since repetitions are not allowed, so after placing one object we are
left with (n — 1) objects, thus the second place can be filled in (n —1) ways. Similarly

Theorem: Prove that: "P. =n(n—1)(n—2)...(n—r+1)=

the third place can be filled in (n—2)ways, and so on. This continues until the »”
place which can be filled in n—(r—1)=n-r+1ways. Therefore, by the
Fundamental Principle of Counting, »places can be filled by n different objects in
n(n—1)(n—2)....(n—r+1)ways.
"P.=n(n-1)(n-2)..(n—-r+1)
_n(n—-D(n-2).(n—-r+1)(n-r)!
- (n—r)!

n!
" (n-r)!
Example 4: How many different 4-digit numbers can be formed out of the
digits 1, 2, 3, 4, 5, 6, when no digit is repeated?
Solution: The total number of digits = 6

The digits forming each number = 4.

So, the required number of 4-digit numbers is given by:

6p, = 6! 6! 654321
(6-4)! 2! 2.1
Example 5: In how many ways can a set of 4 different mathematics books, 3 different
physics books and 2 different chemistry books be placed on a shelf with a space for 9
books, if:
(a)  All the books are kept without any restriction.

n

=6.5.4.3=360
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(b)  All the books of the same subject are kept together.
(c)  Only the mathematics books are kept together.
Solution:
(a) All the books are kept without any  Reason for defining 0! = 1

restriction. e 7 then "P — n! !
Total number of books =4 +3+2=9 n=re e "_(n—n)!_O!
9 I8 I S I B :
oy 32112
°B =91=987.654321 WS 0!
, =91=9.8.7.6.54.3.2.
= 362880 ways

(b) All the books of the same subject are kept together.

4p 3p 2p 3p _a1 21 O1 3 FE—— |

P.°P %P, %P =41.31.21.3! MMM T
:3!.24.6.2.6 4!Ways 3'Ways 2'Ways
=1728 ways

(c) Only the mathematics books are kept together
‘P,.°P.=4!.6!

—24 720 ‘.. ﬁé

!

Example 6: In how many ways 5 people are to be seated on a bench if:

(a) there are no restr}ctlons Challenge!

(b) two people can sit next to each other

(c) two people cannot sit next to each other.
Solution:

(a) when there is no restriction, then ﬂ g g m
L

Number of ways =P, =5!=120

hen t le can sit next to each
(b) when two people ¢ S © 0 cac (/AandB is considered as 1 unit.
other, then

~'p.p Hpﬂpﬂii

56

Find the number of ways if only
physics books are kept together.

5! ways

=41.21=24.2

2' ways
= 48 ways
(c) when two people cannot sit next to each other, then
= °P, — [2 can sit next to each other] In how many ways 6 people
are to seated on a table if 3
=5!-48=120-48 cannot sit next to each other?

=72 way
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10.

11.

12.

13.

14.

P~ EXERCISE 7.2 4

Evaluate the following:
0 “A (i) °P (i) "7, (iv) P,

Find the value of » when:

(i) "P3=504, () BP,=15.14.13.1211  (iii) "Ps:""2P,=1540: 1
Prove from the first principle that:

(i) "Pr=n."'Py (i) "Pr=""'"P,+r." Py

How many signals can be given by 6 flags of different colours, using 2 flags at a
time?

From a deck of 13 cards, find in how many ways these are arranging in a
rectangular form? Hint (order is matter)

(1) All cards (i) 8 cards (ii1) 10 cards

There are 8 men. Find the number of ways of arranging them in a row if:

(a) Two old men are at left side

(b) The youngest man is not at the right side

How many arrangements are there, if 6 books are arranged in a row out of 12
books?

Find permutation of 10 people sitting on a bench if:

(a) There are no restriction (b) 3 cannot sit next to each other.

In how many ways can a set of 4 different blue pens, 3 different red pens and 6
black pens be placed in a rectangular form rack with a space for 10 pens if:

(a) All the pens are placed without any restriction

(b) All the pens of the same colour are placed together

(¢c) Only the red pens are placed together

Hamza wants to distribute 15 pencils among 6 needy children in this way that the
youngest gets 4 pencils and others get 2 pencils. Find how many ways, there are
of arranging in a row form?

In how many ways can 8 books including 2 on English be arranged on a shelf in
such a way that the English books are never together?

Find the number of arrangements of 3 books on English and 5 books on Urdu for
placing them on a shelf such that the books on the same subject are together.

In how many ways can 5 boys and 4 girls be seated on a bench so that the girls
and the boys occupy alternate seats?
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7.3 Permutation of Objects Not All Different

Suppose we have to find the permutations of the letters of the word BITTER using all
the letters in it. The word BIT,T,ER consists of 6 different letters which can be

permuted among themselves in 6! ways.
We can see that all the letters of the word BITTER are not different. It has 2Ts in

it. After replacing 2Ts, we can see there are 2! ways. [gT TLER BIT,T,ER

The replacement of the two Ts by T, \92! Waysé/

and T, in any other permutation will

If there is n, alike objects of one kind, 7, alike

give rise to 2 permutations.

; like objects of
Hence, the number of permutations of alike opjects o

objects of second kind and n,

third kind, then the number of permutations of 7
the letters of the word BITTER taken all  piccts taken all at a time is given by:

at a time. ! n
61_6.5.4.3.2.1 00 o0 nlonl.ont \m,m,n,
2! 2.1

Example 7: In how many ways can be letters of the word |[MISSISSIPPI| be arranged

when all the letters are to be used?
Solution: Total number of letters in the word =11

MISSISSIPPI

I is repeated 4 times = 4! ways

S is repeated 4 times = 4! ways
P is repeated 2 times = 2! ways
M comes once only = 1! ways

. . 1!
Required number of permutations = ————  =34650 ways
41-41.21- 1!
Circular Permutation Note: :
L. . . The following circular arrangements are reflection of
The permutation in which the objects each other and considered 4 4
are arranged in a circular order is same when anticlockwise and
known as circular permutation. clockwise arrangements are . cc B
considered identical.

Circular permutation can occur in two cases:

Case-I: When clockwise and anticlockwise arrangements are considered different
In a linear arrangement, changing the order of objects results in a new arrangement.
However, in a circular arrangement, rotating the entire circle does not produce a new,
distinct arrangement.
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For example, suppose three people A, B, and C are sitting around a round table. The
following three linear arrangements

A-B-C,B-C-Aand C- A - B are all considered the same in circular
permutations because each one is simply a rotation of the others.

We conclude that:

3 linear permutations gives 1 circular permutation.
. . . 1 3! .
3! linear permutations gives 5.3 = 3 = 2! permutations.

Generalizing the above idea if n objects are arranged in a circle, the number of

. . . . n!
distinct circular permutations is — = (n—1)!
n

Case-II: When clockwise and anticlockwise arrangements are considered
identical

In many real-life situations, a circular permutation and its mirror image are not
considered different.

For example, if three beads red, blue, and black are arranged in a necklace, then an
arrangement and its reflection (as shown in the figure) are considered the same.

In such cases, we divide the total number of circular permutations by 2 to eliminate
symmetrical duplicates.

Thus, the number of distinct circular permutations is:
(n=1)!
2
Example 8:  In how many ways can 4 persons be seated at a round table, while:
(1) clockwise and anticlockwise orders are different
(11)  clockwise and anticlockwise orders are identical.
Solution: Let 4, B, C and D be the 4 persons.
6)] If clockwise and anticlockwise orders are different
According to Case-1

The possible number of ways are:

Lo DD
- &\ B & g\

=3.2.1 =6 ways.
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(i1))  If clockwise and anticlockwise orders are identical
According to Case-II

The possible number of ways are = (n_;l) ways 4;' \Bﬂ "C/; \Bﬂ '(; \cv'
VYRR SN SN 9%
2 2
3-2

=—=3 ways
5 Y

P~ EXERCISE 7.3 4

1.  How many arrangements of the letters of the following words, taken all together

can be made?
(i) CURRICULUM  (ii) ADSORPTIVELY (iii) PROBABILITY

2. A girl has 9 marbles. There are 4 red marbles, 3 blue, and 2 green marbles. If she
arranges them in a row, then find in how many different arrangements she can
make take all at time?

3. In how many different ways can the following persons sit in a round table?

Hint (Solve according to both the cases)
(a) 8 persons (b) 7 persons (c) 6 persons

4. In how many ways can 5 couples sit on a round table if no two women are sitting
together?

5. How many arrangements of the letters of the word ATTACKED can be made if
each arrangement begins with C and ends with K?

How many 6-digit numbers can be formed from the digits 7, 7, 8, 8, 9, 9?
15 members of a club form 4 committees of 3, 5, 4, 3 members so that no member
1s a member of more than one committee. Find the number of committees.

8. The D.C.Os of 11 districts meet to discuss the law-and-order situation in their
districts. In how many ways can they be seated at a round table, when two
particular D.C.Os insist on sitting together?

9.  The Governor of the Punjab calls a meeting of 14 officers. In how many ways can
they be seated at a round table?

10. Fatima invites 14 people to a dinner. There are 9 males and 5 females who are
seated at two different tables. Guests of one sex sit at one round table and the
guests of the other sex sit at the second table. Find the number of ways in which
all guests are seated.
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11. Find the number of ways in which 5 men and 5 women can be seated at a round
table in such a way that no two persons of the same sex sit together.

12. In how many ways can 6 keys be arranged in a circular key ring?

13. How many necklaces can be made from 6 beads of different colours?

7.4 Combination
Suppose, a teacher uses the names of few students to make a team for a writing
competition. Such as Ahmad, Sana, Hamza and Danish. As a combination of team
members, (Ahmad, Sana, Hamza and Danish) is equivalent to (Hamza, Ahmad, Danish
and Sana ). Because same students are in the combination. Consequently, you have the
same team because the order of the name of

Ahmad | Sana | Hamza | Danish
Hamza | Ahmad | Danish | Sana

the students does not matter.

So, we are interested in the membership of the
team and not in the ways the students are listed (arranged).

Definition
A combination of 7 objects taken out of n objects is a subset of r objects of a set of n
objects.

The number of combinations of » different objects taken r at a time is denoted by "C.

n !
or C(n, r) or and is given by "C, = L —
r ri(n—r)!
!
Theorem. Prove that "C = S
ri(n—r)!

Proof: Elements of a subset of 7 objects of a set of n objects can be arranged among
themselves in r! ways. So, each combination will give rise to 7! permutation. Thus,
there will be "C, x r! permutations of n different objects taken 7 at a time that is:
"Crx r! ="P,
n! n!
= "Crxrl = o "Cr=

(n—7)! ' (=1l
Need to know

Which completes the proof.

Corollary:

The formulae”P, and "C, are also

|
(1) Ifr=mn,then nC,= mo_n =1 known as counting formulae.
nl(n—n)! n!0! Because, they are used to count the
| | possible number of ways without
(i) If »=0, then "Co= n: - _ 1 listing them all.

0l(n—0)! 0! n!
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7.4.1 Applications of Combination in Real Life

Example 9: Zain has 8 different fruits. He wants to select 5 fruits out of 8 fruits to
make a fruit chart. How many combinations of fruits he can select?
Solution: To solve this problem, we have to find the number of combinations of 5 fruits
out of 8 fruits. In this situation, n = 8 and r = 5.
; n!
T (n—r)!
After putting values
s, = 8 _ 8!
51(8-5)! 51.3!
_8xTx6x5! 8xTx f

5.3 371

=8x 7=56 ways

Zain has 56 different ways to select 5 different fruits to make a fruit chart.

Example 10: In a school, a class consists of 12 girls and 8 boys. The teacher wants to

select 5 students for an activity. In how many ways can the students be selected

including? (i) 2 girls (i) 5 boys (ii1) 2 boys

Solution: Number of girls = 12
Number of boys = 8 A restaurant offers 6

(i) Now let’s find the total number of ways to select students  f,yqurs of pizza. How

when exactly 2 are girls. many ways are there to
12! 8! 12-11-10! 8-7-6-5! select 2 flavours of
12 8 _ ° — . = :
(“e)( C3)_2!10! S5t 2000 32as 000 e
(1i1) Let’s find total number of ways to select students when exactly 5 students are boys.
8 8! 8! _8~7-6~5!_56

CS p— — p— p—

51@8=5)! 5131 5!3.2-1

(ii1) Let’s find total number of ways to select students when exactly 2 students are boys.
8 12 g 12! 8-7-6! 12-11-10-9!
e C) =3 301" 7ar

216! 319! 2.6! 3-2-1-9!
7.4.2 Complementary Combinations
Theorem. Prove that: "C,="C,-,
Proof: If from n different objects, we select » objects then (n — r) objects are left.

= 36960

Corresponding to every combination of » objects, there is a combination of (n — r)
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objects and vice versa. Thus, the number of combinations of z objects taken 7 at a time
is equal to the number of combinations of #n objects taken (n — r) at a time.

"G ="C,,

. n! This result will be found useful in evaluating
nir:(”"’)!(n_”l""”)! ”Crwhenr>£.
= L For example, ’
" :Ci(n - “c,="c,, ="C, = (12)2'(1 D_ 6.11=66

Example 11: Find the number of the diagonals of a 6-sided figure.
Solution: A 6-sided figure has 6 vertices by joining any two vertices, we get a line
segment.
!
Number of line segments = °C, = ﬁ =15
But these line segments include 6 sides of the figure
number of diagonals = 15-6 = 9

Difference between permutation and combination

Permutation Combination
* Order is important. *  Order is not important
e.g., ab and ba are different (because e.g., ab and ba are same
order of any object is matter) (because order does not matter)
+ Arrangement of objects » Selection of objects
e.g. arrangement of: e.g. selection of:
* ball of different colours * different colours
* English alphabet (letters) * members in a team
* people while sitting on chairs * food items

Application of Permutations and Combinations in Cryptography

Example 12: Zain wants to generate a password for his laptop to secure the data. He
can take only 6 characters to generate a password. Each character can either be an upper
case letter (4 — Z) or digits from (0 —9).
Can you tell how many passwords can be generated by using the above letters and
digits:

(1)  Ifrepetition of characters is not allowed

(i1))  Ifrepetition of characters is allowed
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Solution: Total number of letters = 26
Total number of digits = 10
Total number of letters and digits =26 + 10 =36
n = total number of characters = 36
r = required number of characters = 6
(1) Ifrepetition of characters is not allowed, we find out total possible permutations as.
porop o 36 _36!
(36—-6)! 30!
_36-35-34-33-32-31-30!
- 30!
=36-35-34-33-32-31
=1,402,410,240 ways

Hence, 1,402,410,240 passwords can be generated by using the 26 alphabet and 10

digits. (If repetition of the characters is not allowed)

(i) If the repetition of the characters is allowed. Using Fundamental Principle of
Counting:
The total number of possible combinations = 36 x 36 x 36 x 36 x 36 x 36 = 36°

Hence, 36° passwords can be generated by using the 26 alphabets and 10 digits, If
repetition of characters is not allowed.

Application of permutations to estimate the odd of winning the lottery.

Example 13: A box contains 15 cards from (1 — 15). Danish is to select 5 cards. If all
the selected cards are the first five multiples of 2 then Danish will win the game. Find
Danish's chance of winning the game, when

(1) Order is important (i1) Order is not important
Solution: n = total number of cards = 15
r = required number of cards = 5

(i) When order is important,

: 15!
Total possible ways="P. = P, = >
(15-5)!
!
_B 360, 360 ways
10!
Hence, Danish’s chance to win the game = . 0.000002775

360, 360
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(i1) When order is not important
n = Total number of cards = 15
r = Required number of cards = 5
15!
T 51(15-5)!
15! 15x14x 13x 12x 11x o1
“51100 st 161
15x14 x13 x12x11
- S5x4x3x2x1

Total possible ways = "C. = °C;

=3003 ways

Hence, Danish’s chance to win the game = ﬁ =0.00033

Application of Permutation and Combination to choose different sets of songs for
Certain Occasions
Example 14: On Independence Day, a DJ has a list of ten different national songs. He
wants to select any five national songs for the day. Find how many ways he can select
and play the songs:
(1) If the order of playing the songs matters
(i1) If the order of playing the songs does not matter.
Solution: (1) When order matters
n = total number of national songs = 10
r = required number of national songs =5

Total number of ways="P. = "°P,

! !
10 IO 50240 ways
10-5)! 5!
Hence, the DJ can play the five national songs in 30,240 different ways.
(11) When order is not matter

n = total number of national songs = 10
r = total number of selected national songs =5

|
Total number of ways = "C, = "°C, = _ 10
5110 5)!
'
_ 10 252 ways
5!.5!

Hence, the DJ can play the five national songs in 252 different ways.
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P~ EXERCISE 7.4 4

1.  Evaluate the following:
(i) °C, () °c (iii) °C, (iv) “c,

2. Find the value of n, when

N 0 o n 14.13.12 TR n
1 "C,="C, 1) "C, = 3 (1) "Cy="C,
3. In how many ways can five subjects be selected out of eight subjects to select a

course programme?

4.  Find how many ways there are to choose vowel words from the letter of English
alphabet?

5. In how many ways 3 dishes of Desi foods and 2 dishes of Chinese foods be
selected from 6 dishes of desi foods and 8 dishes of Chinese foods?

6. From a standard deck of 52 playing cards, there are 26 black cards and 26 red
cards. How many different possible ways are made of eight cards if select 3 cards
of black colour and others are of red colour?

7. A bag contains 8 red balls, 7 green balls. Find the total number of possible ways
in which five balls are selected in a way:

(1) 3 redand 2 green (i1)) 1 red and 4 green
(111) 4 red and 1 green (iv) All the red balls
8. How many (a) diagonals and (b) triangles can be formed by joining the vertices of
the polygon having:
(1) 5 sides (i) 8 sides (ii1) 12 sides?

9. The members of a club are 10 boys and 8 girls. In how many ways can a
committee of 6 boys and 3 girls be formed?

10. How many committees of 5 members can be chosen from a group of 8 persons
when each committee must include 2 particular persons?

11. In how many ways can a hockey team of 11 players be selected out of 15 players?
how many of them will include a particular player?

12. Show that: *°C, + *°C, ="'C,

13. There are 6 men and 8 women members of a club. how many committees of seven
can be formed?
(i) 3 women (i) at the most 3 women (ii1) at least 5 women?

14. Prove that "C. + "C._, =""'C,

”
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15.

16.

17.

18.

A locker of a bank is locked with four letters (A-Z). How many different
passwords can be generated if:

(a) repetition of the alphabets is allowed

(b) repetition of the alphabets is not allowed

Using a cryptographic system, a password is generated with 8 characters. Each
character can either be a lowercase letter (a—f) or a digit (0-5). How many
passwords can be generated if each password must contain exactly 5 lowercase
letters and 3 digits?

(a) With repetition allowed (b) Without repetition.

An urn contains the first 15 English letters (A—O). Sania is to randomly select 3
letters from the urn. She will win the game if the selected letters are the first three
vowel letters. Find the probability of Sania winning the game if:

(a) The order of the vowel letters matters

(b) The order of the vowel letters does not matter

On Defense Day, Teacher I prepares a list of 10 national songs, and Teacher II
also prepares a separate list of 10 different national songs. The principal wants to
select 3 songs from Teacher I's list and 3 songs from Teacher II's list. In how
many ways can the songs be selected if:

(1) The sequence of the selected songs matters
(i1) The sequence of the selected songs does not matter.



Mathematical Induction
and Binomial Theorem

INTRODUCTION

Francesco Mourolico (1494-1575) devised the method of induction and applied this
device first to prove that the sum of the first n odd positive integers equals n’. He
presented many properties of integers and proved some of these properties using the
method of mathematical induction. In theoretical computer science, it bears the pivotal
role of developing the appropriate cognitive skills necessary for the effective design
and implementation of algorithms, assessing for both their correctness and complexity.

We are aware of the fact that even one exception or case to a mathematical formula is
enough to prove it to be false. Such a case or exception which fails the mathematical
formula or statement is called a counter example.

The validity of a formula or statement depending on a variable belonging to a certain
set is established if it is true for each element of the set under consideration.

For example, we consider the statement S(n) =n* —n+ 41 is a prime number for every

natural number n. The values of the expression n° —n+41 for some first natural
numbers are given in the table as shown below:

n 1 2 3 4 5 6 7 8 9 10 11
S(n) 41 | 43 | 47 | 53 61 71 83 | 97 | 113 | 131 | 151

From the table, it appears that the statement S(n) has enough chance of being true. If

we go on trying for the next natural numbers, we find n=41as a counter example
which fails the claim of the above statement. So we conclude that to derive a general
formula without proof from some special cases is not a wise step. This example was
discovered by Euler (1707 — 1783).

Now we consider another example and try to formulate the result. Our task is to find
the sum of the first #n odd natural numbers. We write first few sums to see the pattern
of sums.
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n (The number of terms) Sum
1 1=1°
2 1+3=4=2"
3 1+3+5=9=237
4 1+3+5+7=16= 47
5 1+3+54+7+9=25= 57
6 143+5+74+9+11=36=6"

The sequence of sums is (1)%,(2)%,(3)%,(4)%, ...

We see that each sum is the square of the number of terms in the sum. So the following
statement seems to be true.

For each natural number #,

14345+, . + Q2n-1)=n> ... (i) -+ nth term = 1+ 2(n — 1)

But it is not possible to verify the statement (i) for each positive integer n, because it
involves infinitely many calculations which never end.

The method of mathematical induction is used to avoid such situations. Usually it is
used to prove the statements or formulae relating to the set {1,2,3,...} but in some cases,
it is also used to prove the statements relating to the set {0,1,2,3,...}.

Hypothesis: A hypothesis is an educated guess or proposed explanation for a statement
based on limited evidence. It serves as a starting point for further investigation and can
be tested through experiments and observation. In scientific research, a hypothesis is
usually framed as a statement that can be tested and either supported or rejected by
data.

Induction of Hypothesis: It refers to the process of formulating a general statement
or hypothesis based on specific examples or patterns observed in particular cases. This
technique is often employed in mathematical reasoning to propose conjectures that
can later be proven rigorously using deductive methods.

8.1 Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

If a proposition or statement S(n) for each positive integer # is such that
1. Base Case: S(1) is true i.e., S(n) is true for n = 1 and

2. Induction of Hypothesis: S(k + 1) is true whenever S(k) is true for any positive
integer k.

3. Conclusion: S(n) is true for all positive integers.
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Procedure for Induction of Hypothesis:

e Substituting n = 1, show that the statement is true for n = 1.

e Assuming that the statement is true for any positive integer &, then show that it is
true for the next higher integer.

For the second condition, one of the following two methods can be used:

S(k + 1) is proved using S(k).

S(k + 1) is established by performing algebraic operations on S(k).

Example 1: Use mathematical induction to prove that 3+6+9+...4+3n= w for

every positive integer 7.
Solution: Let S(n) be the given statement, that is,

S(n): 3+6+9+...+3n=M

Base Case: Whenn =1, S(1): 3= w

= 3. Thus S(1) is true i.e., The base

case is satisfied.
Induction of Hypothesis: Let us assume that S(n) is true for any n = ke N , that is,
_ 3k(k+1)

S(k): 3+6+9+...+3k (A)
The statement for n = k+1 becomes
346+9+...+3k+3(k+1) = 3(k+1)[(2k+1)+1]
3(k+1)(k+2
3k 1)(k+2) ®)
2
Adding 3(k +1) on both the sides of (A) gives
346+9+ ... +3k+3 (kt) = @H(l«ﬂ)
= 3(k+1)(§+1)
_3(k+1)(k+2)
2

Thus S(k + 1) is true if S(k) is true.

Conclusion: Since both the conditions are satisfied, therefore, S(n) is true for each
positive integer n.
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Example 2: Use mathematical induction to prove that for any positive integer #,

P2 43 g2 = 20 D@0 AD

6
Solution: Let S(n) be the given statement,
S(n): 1> +2° +3% 440’ = "(”+1)6(2"+ D
Base Case: Ifn=1, S(1):(1)° = 1+ (62><1+ D_Dx2x3_, , which is true. Thus

S(1) is true, i.e., The base case is satisfied.

Induction of Hypothesis: Let us assume that S(k) is true for any k€ N, that is,
k(k+1)(2k+1
(k+1)( ) (A)
6
(k+D)(k+1+ )2k +1+1)

6
_(k+D(k+2)(2k+3)

6
Adding (k +1)? to both the sides of equation (4), we have
 k(k+1)(2k +1)
- 6
_ (k+DEQRE+1)+6(k+1)]
- 6
:(k+1)(2k2 + k + 6k + 6)

6

_(k+D(2k* + Tk +6)

6
_(k+D(k+2)(2k+3)

6

Stk): P+2*+3 +..+k> =

Shk+1D): P+22+3% +. 4k +(k+1)* =

(B)

P+2+3 +. 4+ k2 +(k+1)° +(k+1)

Thus, formula holds for £ + 1.
Conclusion: Since both the conditions are satisfied, therefore, by mathematical

induction, the given statement holds for all positive integers.

n’+2n

Example 3: Show that

represents an integer Vne N.

n’+2n

Solution: Let S(n) =

I’ +2(1 3
Base Case: Whenn=1, S(1)= +T() = Y =1e Z . The base case is satisfied.
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Induction of Hypothesis: Let us assume that S(n) is true for any n = ke N, that is,
k* +2k

S(k) =

represents an integer.

Now we want to show that S(k + 1) is also an integer. For n = k + 1, the statement
becomes
_(k+D)’+2(k+1)

S(k+1) =
(k+1) i
_ K3k +3k+14+2k+2 (K’ +2k)+ (3k” +3k+3)
3 3
3 2 3
_ (& +2k)+;3(k +k+D) _k +2k+(k2+k+1)
ik +2k . . . 2 . .
As is an integer by assumption and we know that (K~ + k +1)is an integer as

ke N. S(k+ 1) being sum of integers is an integer, Thus statements holds for k& + 1.

Conclusion: Since both the conditions are satisfied, therefore, we conclude by
3

mathematical induction that represents an integer for all positive integral

values of n.
Example 4: Use mathematical induction to prove that

3(5n+l _ 1)

3+3.5+3.5 +..+3.5" = , whenever 7 is non-negative integer.

Solution: Let S(n) be the given statement, that is, The dot (.) between two
3 gt 1) numbers stands for

multiplication symbol.

S(n):3+3.5+3.5 +..+3.5" =

35" =1) _365-1) _

or3 3

Base Case: For n =0, 5(0):3.5° =

Thus S(0) 1s true 1.e., The base case is satisfied.
Induction of Hypothesis: Let us assume that S(k) is true for any k€ N, that is,

k+1
S(K):3+3.5+3.5 +..+35 =20 —D "
Here S (k+1) becomes
(k+D+1
S(k+1):3+3.5+3.5" +..+3.5 +3.5"= w
3 5k+2 _1

4
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Adding 3.5 on both sides of (A), we get

3(5k+l _ 1)

3+3.5+3.5% +...+3.5+35%! = +3.5%

_3(5" -1+45"

4
s+ 4)-1 3542 1)
4 4

This shows that S(k + 1) is true when S(k) is true.
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S(#) in true foreach ne W.

Example 5:  Prove that 4" + 6n—1 is divisible by 9 for all ne N
Solution: Let S(n) be the given statement,

S(n)y=4"+6n-1
Base Case: Putn=1, S1)=4'+6(1)-1=4+6-1=9

Which is divisible by 9. Hence it is true for n = 1.
Induction of Hypothesis: Suppose the statement is true for n = £. i.e.,

S(k)=4"+6k—1 is divisible by 9 (A)
This implies S(k) = 4" + 6k —1= 9k, for some integer ki
4 +6k-1=9k

Nowputn=~k+1,
Stk+1) =4""+6(k+1)-1=4-4"+6k+6-1
=49k, —6k+1)+6k+6—1
=36k —24k+4+6k+5

=36k —18k+9
=9(4k, -2k +1) (B)
Which is divisible by 9.

Thus S(k) is true for n = k + 1. So the statement is true for all natural numbers
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, the given statement is true for all integers n > 1.

Example 6: Use mathematical induction to prove that

Z(% - 1)1( 2k +1) - 2nn+ I’ whenever 7 is a positive integer.
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Solution: Let S(n) be the given statement, that is,

n

Stn) Z (2k - 1) (2k+1) 2n+1

1 n
Base Case: Forn=1, S(1 - ’
ase Case: For n (1): ;(2k 1)(2k+1) 2n+1

1 1 1 1
- = = —=—
.3 2-1+1 3 3
Thus S(0) is true i.e., The base case is satisfied.
Induction of Hypothesis: Let us assume that S(n) is true for n = m, that is,

St )Z (2k-1) 2k+1)= )

2m+1

Here S(m+1) becomes
m+1 1 m 1
S(m +1): =
) Y T2k e1) " 2me 1 ama 1) (2m+3)

m(2m+3)+1  2m*+3m+1  (m+1)(2m+1)
(2m+1)(2m+3) (2m+1)(2m+3) (2m+1)(2m+3)

m+1 m+1 m+1
= (B)
T Om+3 2m+2+1 2(m+1)+1

This shows that S(k + 1) is true when S(k) is true.
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S(») in true for each ne W.
8.1.1 Principle of Extended Mathematical Induction
Let i be an integer. A formula or identity or statement S(n) for n > i is such that

1. Base Case: S(i) is true and

2. Induction of Hypothesis: S(k +1) is true whenever S(k) is true for any integer

nxi.

3. Conclusion: S(n) is true for all integers n>i.
Example 7: Show that 1 +3 +5+ ... (2n +5) = (n+3)” for integral values of n>-2.
Solution:
Base Case: Let S(n) be the given statement, then for n = -2, S(-2) becomes,

2(-2) + 5= (-2 +3), i.e., 1 = (1)’ which is true.

Thus S(-2) is true i.e., The base case is satisfied.
Induction of Hypothesis: Let the equation be true for any n = ke Z, k > -2, so that

S(h): 1 +3+5+...+ 2k +5)= (k+3)? (A)
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Sth+1): 1+3+5+. 42k +5)+Qk+1+5)=(k+1+3)> =(k+4)> (B)
Adding (2k_+1+ 5) = (2k + 7) on both sides of equation (A) we get,
14+3+5+...+Qk+5+Q2k+7) =(k+3P>+Q2k+7)

=k +6k+9+2k+7

=k +8k+16=(k+4)
The formula holds for £ + 1.

Conclusion: As both the conditions are satisfied, so we conclude that the equation is
true for all integers n > -2

Example 8: Show that the inequality 4" > 3" + 4 is true, for integral values of n>2.
Solution: Let S(n) represents the given statement i.e., S(n): 4" > 3" + 4 for integral
values of n>2
Base Case: For n =2, S(2) becomes

S(2): 4* >3*+4,i.e., 16 > 13 which is true.

Thus S(2) is true, i.e., The base case is satisfied.
Induction of Hypothesis: Let the statement be true for any n = k(> 2)e Z , that is

S(k): 4°>3%+4 (A)
Multiplying both sides of inequality (A) by 4, we get
4.4" > 43" +4)

or 4% > 3+1)3" +16
or 4 >3 14435 112
or 44t 538 4 g (: 3k+12>0) (B)

The inequality (B), The formula holds for £ + 1.
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
extended mathematical induction, the given inequality is true for all integers n=>2.
8.1.2 Real Life Application of Mathematical Induction
Mathematical induction is a powerful method used to prove statements that are
formulated for natural numbers. It is often used in mathematics to justify conclusions
about sequences, series, and other constructs that involve integer values.
Example 9: Mr. Faris starts a savings plan where she deposits Rs. 1,000 rupees into
his bank account every month. Using mathematical induction, prove that the total
amount saved after » months is given by:

S(n)=1000xn rupees
where 7 is a positive integer representing the number of months.




. Mathematical Induction and .
Unit Q Binomial Theorem <4> Mathematics

Solution:Given Statement S(7)=1000xn

Base Case: For n = 1: After the first month, Faris save Rs. 1000. Therefore, the total
savings after one month is 1000x1 = 1000 rupees. The base case S(1) holds true.
Induction of Hypothesis: Assume the statement is true for some positive integer &,
1.e., after £ months, the total savings is S(k) = 1000 x k rupees.

Now, prove that the statement holds for &+ 1 months: After £ +1 months, you would
save an additional Rs. 1000, so the total savings becomes: S(k + 1) = 1000 x k£ +1000
= 1000 % (k +1) rupees. Thus, if the statement holds for £, it also holds for & +1.
Justification and Communication: Using mathematical induction, we prove that
saving Rs. 1000 monthly for » months totals 1000 x n rupees.

The base case (n = 1) holds, and assuming it's true for £ months, we show it for &+ 1.
Thus, the statement is valid for all natural numbers 7, making it reliable for real-life
applications.

Example 8: Imagine Ali starts a daily exercise routine where each day he increases the
number of push-ups he does by 2. On the first day, he does 10 push-ups. Prove that on
the n'" day, the total number of push-ups Ali has done is #”> +9n

Solution: Base Case: For n = 1: On the first day, Ali do 10 push-ups. Total push-ups
=10 x 1 — 10. The base case S(1) holds true.

Induction of Hypothesis: Assume the statement is true for some positive integer £,
i.e., the total number of push-ups after k days is S(k) = k* +9k.

Now, prove it for k + 1 days: On the (k + 1)th day, you do 10 + 2 x k push-ups. The

k> +9k+(10+2k) =k *+2k+1+9k+9
total after £ + 1 days becomes:
=(k+1)°+9(k+1)

The formula holds for S(k+1).
Conclusion: By mathematical induction, the total number of push-ups after n days is
n*+9n

Example 9: Suppose you aim to lose weight by reducing your calorie intake by 50
calories each week. If you start at 2500 calories, prove that after n weeks, your daily
intake is 2500-50# calories.
Solution: Base Case: For n = 1: After 1 week, your intake is 2500 — 50 = 2450 calories.
The base case S(1) holds true.
Induction of Hypothesis: Assume the statement is true for some positive integer £,
i.e., after k: weeks, your intake is S(k): 2500-50k calories.
Now, prove it for £ + 1 weeks: After k + 1 weeks, your intake will be:

2500 — 50k — 50 = 2500 — 50(k + 1) calories. The formula holds for k& + 1.
Conclusion: By mathematical induction, your daily intake after n weeks is 2500-50n

calories.
>
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P~ EXERCISE 8.1 4

Use mathematical induction to prove the following formulae for every positive
integer n.

() 1+3+5++@n-1)=n?
11 1 { 1]

il l+—+—+ . +—=2|1-—
(i) 2 4 2"|J

2n—1

(i) 2+6+18+ = +2x3""'=3"-1

(iv) 1><3+2><5+3><7+,”+nx(2n+1):w

6
1 1 1 1 1
(v) + + +..+ =1-
Ix2 2x3 3x4 n(n+1) n+1
(vi) r+r2+r3+...+r”=M, (r+1

(vii) a+(a+d)+(a+2d)+...+[a+(n—1)d]=%[2a+(n—l)d]
(viii) a,=a,+(n=1)d when,a,, a, +d, a, + 2d, ... form an A.P.

. — 2
(ix) a,=a,r"" when a,,a,r,a;r, ... formaG.P.

oM

Prove by mathematical induction that for all positive integral values of n
(i) n*+n is divisible by 2 (i) 5" —2" is divisible by 3
(ii1) 8x10" —2is divisible by 6

n+l
o —

Prove that Zr" _
k=1

- whenever 7 1s a positive integer.
.

x —yis a factor of x" —y"; (x # y)

n!>2" —1 for integral values of n > 4.

4" > 3" +2"" for integral values of n>2.
l+nx<(1+x)" forn>2and x > —1.

Aliza invests Rs. 1,000,000 in a business that promises a 6% return compounded
annually. Prove by mathematical induction that the amount of money after n years
is 1,000,000(1.06)".

Sikander starts saving Rs.500 in the first month and plan to increase your savings
by Rs. 500 each month thereafter. He wants to determine if he will have saved at
least Rs. 12,000 by the end of 24 months. Use mathematical induction to justify
whether his savings plan will meet this goal.
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10. Prove by mathematical induction that if a loan of Rs. 2,000,000 and pay Rs.
50,000 at the end of each year, the remaining balance after n years is R, =
2,000,000 — 50,000n.

11. If Salman starts with Rs. 5,000 and saves Rs. 1,000 monthly, derive S(n) and
prove it by induction.

8.2 Binomial Theorem
An algebraic expression consisting of two terms such as a + x, x — 2y, ax + b etc., is
called a binomial or a binomial expression.
We know by actual multiplication that

(a+x)" =a’ +2ax+x’ (1)

(a+x) =a’ +3a’x+3ax’ + x° (i1)
The right sides of (i) and (ii) are called binomial expansions of the binomial
a + x for the indices 2 and 3 respectively.
In general, the rule or formula for expansion of a binomial raised to any positive
integral power # is called the binomial theorem for positive integral index n. For any
positive integer n,

(a+x)" = " a” + " o x+ i A"+ " gDy
0 1 2 r—1
+[nja""’x’+...+( " jax“+(njx” (A)
r n—1 n

. —~ (),
or briefly (a + x)" = Z ( ja” "x", where a and x are real numbers.
r

The rule of expansion given above is called the binomial theorem and it also holds if a
or x is complex.

Now we prove the Binomial theorem for any positive integer n, using the principle of
mathematical induction.

Proof: Let S(n) be the statement given above as (A).

Base Case: If n =1, we obtain S (1): (a+x)' = ( }))al + ( i )a“x = a+ x which is true.

The base case is satisfied.
Induction of Hypothesis: Let us assume that the statement is true for any n=ke N, then

k kY . kY . k (kY L
S(k): (a+x)* :(Ojak +(1 }k 1x+[2}k 2,2 +....+{ ljak (=) or 1+( }k T
r— r
+....+( k jaxk1+[k}rk (B)
k-1 k




Unit € Pt N EpS - |
k+1 k+1
S(k+1): (a+)c)k+1 :£ a* (kJrl)a XX+ 5 atxxt .+

0

k+1 k+1 k+1 k+1
x4 AL A S ax x* + X! ©)
r—1 r k ko +

Multiplying both sides of equation (B) by (a + x), we have

k __ k k k k-1 k k=2_2 k k=r+1_r-1
(a+x)a+x) =(a+x) 0 a” + | a’ X+ ) a X"+t 1 a " x

\v_/

o) ( U ("”J LA
As = nd + = forO<r<k
k+1 r r—1 r
(a+x)k+1 (k ]k“ (k-l'-l}l x+(k;1]ak*x2+...
+(k:1jak_’+1x" +... +(k;1}1 x* +(£I%}Y“l ...(D)

We find that if the statement is true of n = £, then it is also true for n = k +1.
Conclusion: Hence, we conclude that the statement is true for all positive integral values

, L L oeng are called the binomial coefficients.
n

0/\1 2
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The following points can be observed in the expansion of (a + x)"

(1)
(i)
(iii)
(iv)
(v)

(vi)

The number of terms in the expansion is one greater than its index.

The sum of exponents of @ and x in each term of the expansion is equal to its
index.

The exponent of @ decreases from index to zero.
The exponent of x increases from zero to index.

The coefficients of the terms equidistant from beginning and end of the expansion

n n
are equal as ( j:( j
r n—r

The (» +1)th term in the expansion is (n

Ja”’x’and we denote it as 7, i.e.,
r

As all the terms of the expansion can be found from it by putting =0, 1, 2,..., n, so we
call it as the general term of the expansion.

Example 10: Expand ( 5

6 6

Solution: E_Z = 3+ _2
2 a 2 a

(2

6
4 _ lj and also find its general term.
a

a® a’ 2 6.5 a* 4 654 a° 8 6.5 a* 16
=46 — | —— |+ — — 4+ — - — = —
64 32 a 116 a? 3.2.1 8 a’ 1 4 a

al—32 64
6.2 ot
Fe
6
S4B B 50,00 96 64

64 8 4 a> at af
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T

r+l2

the general term is given by
6-r r 6-r r
L
" A2 a r)arr a
a() r a—r a6—2r ) 6 a 0-2r
=(-D" = —=(=1) -

Example 11: Evaluate (9.9)5 using binomial theorem.
Solution: (9.9)° = (10-0.1)°
= (10)° +5x (10)* x (=0.1) + 10(10)° x (=0.1)* +10(10)* x (=0.1)°
+510) (=) +(=.1)°
=100000 — (0.5)(10000) + (10000)(0.01) + 1000(=0.001) + 50(0.0001) — 0.00001

= 100000 - 5000 +100 —1+ 0.005 —.000001
= 100100 .005 - 5001.00001 = 95099 .00499

11
Example 12: Find the specified term in the expansion of [%x — ij ;

3x
(i) the term involving x’ (i) the fifth term
(iii) the sixth term from the end.  (iv) coefficient of the term involving x™'
Solution:
3 1 11
(i) Let T.,, be the term involving x’in the expansion of (TX - 3—} , then
X

T

11 311 i 11 r o= r 11 3117” 11-2r
- (Ve = el P

As this term involves x°, so the exponent of x is 5, that is,
11-2r=5o0or -2r=5-11=r=3

Thus T A involves x°

11\3i-6 11.10.9 3°
- C 1)[ )2“3’xuﬁz( Do

165x243 . 40095
- = -—X

256 256
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(i) Puttingr=4in T.,, we get T,
I, = 1)’ 11)3"8 s 1110938 3 &
21 4321 277
. 11)(10)(3 27 3 165)(27 3 4455 3
= . X = X = —x
1 128 64 64

(ii1)) The 6th term from the end term will have (11 + 1) — 6 i.e., 6 terms before it,
It will be (6 + 1) th term i.e., the 7 term of the expansion.

11-12 4
Thus 7, = (¢4 g a2 R8T 3

—.X

54321 2°
_llxéx7 1 1 _ 77
1 3x32 «x 16x

(iv) % is the coefficient of the term involving x '

8.2.1 The Middle Term in the Expansion of (a + x)"

In the expansion of (a + x)", the total number of terms is n + 1

Case I: (n is even) If n is even then n+1 is odd, so (% + ljth term will be the

only one middle term in the expansion.

Case II: (n is odd) if n is odd then n + 1 is even so( 5 1jth nd ( 5 3 jth terms of

the expansion will be the two middle terms.

2

12
Example 13: Find the following in the expansion of (% + i} ;
X

1) the term independent of x. i1)  the middle term
Solution: 1) Let T

r+l

12
(%+%j , then
X
T ~ 12 X 12—r 2 r
r+l r 2 x2
_(12 X' Y = 12 H2r-12 12-3r
r o2 . )

As the term is independent of x, so exponent of x, will be zero.

be the term independent of x in the expansion of
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Thatis, 12-3r=0=>r=4.

28_12_x12_12: 12x11x10%x9 '2_4.x0

12
Therefore, the required term T_=
3 4 4x3x2x1

_ 11x45 _ 495
24 16

(i) In this case, n = 12 which is even, so (% + lJth term is the middle term.

2y x V' (2Y
r, = (6 j(Tj (?j Because T, is the required term.

_ (12}66 2°  12x11x10x9x 8x 7 o2

6 2_6x7 - 6x5%x4x3x2x1

12x11x7 924

.X'6 )C6
8.2.2 Some Deductions from the binomial expansion of (a + x)"
We know that

n ny _ ny
(a+x)" =( ja" +( ja” 1x+( )a" X
0 1 2
+[ " ja""’x’ +...+( " jaxH +(n jx” (A)
r n—1 n

(1) Ifweputa=1,in (I), then we have;

(1+x)" =(g j+(f ]x+(z sz +...+(’: jx’+...+[n’iljx” ‘+(Z Jx” (B)

0D o pO DO DD e
! r!
. [n oot () (n—rA)n-r) _ n(n—l)....(n—r+l)}
)= ri(n—r)! ”

(i1) Putting a = 1 and replacing x by —x, in (1), we get.

a=0=(§ Je(§Jene (8 Yoo (3o e (2 oo (3 oo
:(Z )-[?}H(Z sz —[ Z }8 +...+(_1)n—1(n’i1jxn4 +(_1)n(’;}cn ©)

(i11) We can find the sum of the binomial coefficients by putting ¢ = 1 and
x=11n ().




EEO e <> e OO
ie., (1+1)" :(8 )+[iq j+(g )+....+(n”_1j+(z )
or 2" =[61 )+[{l )+[’21 )+....+(n”_1)+(z )

Thus, the sum of coefficients in the binomial expansion equals to 2" .
(iv) Putting a =1 and x =-1, in (I), we have

(g HT R (o)
(0 (G o (oo

If n is odd positive integer, then

If n is even positive integer, then

Thus, sum of odd coefficients of a binomial expansion equals to the sum of its even
coefficients.

Example 14: Show that: [;1 ]+ 2[; j+ 3(: j+...+ n( " ]z n2"!
n

Solution: (n ]+ 2(” )+3(” ]+...+ n(n J:n+2n(n_1) +3n(n_1)(n_2) +.o.+nl
1 2 3 n 2! 3!

= n.[l+ (n—1)+

e i
P~ EXERCISE 8.2 4

1.  Using binomial theorem, expand the following:

(i) (i—%j (ii) (2a—fj (iif) (\/Z_\/ZJ
2 X a X a

2. Calculate the following by means of binomial theorem:
(i) (0.97)° (i) (2.02)" (iii) (9.98)" (vi) (2.1

w+...+l |
2! _
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3. Expand and simplify the following:
. 4 4 .. S

@) (a+~v2x) +(a—v2x]) i) (2++3) +(2-3)
4.  Expand the following in ascending power of x:

i Q+x-xH* (i) A-x+x*)*
5. Find the term involving:

2

13
(i) x*in the expansion of (3—2x)’ (ii) x~in the expansion of (x — ij
X

11

9
(iii) a”in the expansion of [i - aj (iv) y’in the expansion of (x — \/; )
X
6. Find the coefficient of;

10 2n
(i) x’in the expansion of (xz - %j (i1) x" in the expansion of (xz - Lj
X X

10
7. Find 6th term in the expansion of (xz - Zij
x

8.  Find the term independent of x in the following expansions.

(i) x—ij (ii) (Jhij iii)(1+x2)3(1+i2J
X

x 2x°
9.  Determine the middle term in the following expansions:
12 11 2m+1
. 1 x° . 3 1 1
1 —_—— 11 —x—— m) | 2x——
2 x 2 j @) ( 2 3x] (i) ( 2xJ

n n n n .
10. Show that: + + +ot =2"
1 2 3 n

8.3 The Binomial Theorem When the Index » is a Negative

Integer or a Fraction
When 7 is a negative integer or a fraction, then

(1+x)" =1+nx+ n(nle) X+ n(n—l;(n—Z)x3+

N n(n—l)(n—f?...(n—r+l) .

provided | x |< 1.

1s called the

The series of the type 1+nx+ n(n2|— D x>+ nn=Hn=2) X’ +

3!
binomial series.
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e The proof of this theorem is beyond the scope of this book.
n n n
. Symbols( N ),(1 ),( , )etc are meaningless when 7 is a negative integer or a
fraction.
nn-1) (n—2)...(n—-r+1)
r! *
Example 15: Find the general term in the expansion of (1+ x)~ when| x| <1.

T = (_3) (_4) (_5)(—3— v+ 1) ){

r+l

e The general term in the expansionis 7 =

Solution: T, , =

r!

_ ) 345.042) , 12345..(+2)

=D

r! 1.2.r)
= 1y rl.(r+1) (r+2) o = (—l)r.wx’
2.r! 2

Some particular cases of the expansion of (1 + x)", n<o.
1) A+x)'=1-x+x> - +..+ D)X +...
(i) A+x)7=1-2x+3x" —4x" +...+ (=) (r+Dx" +...

(ifi) (14 x)° =1=3x+6x> —10x + ...+ (=1)’ Lz(”z)x’ g

(v) A=x)"=1+x+x>+x + .. +x"+ ...

(V) (0=x) 7 =1+2x+3x" +4x° +..+(r+1)x" +...

e (r+2)
2

8.3.1 Application of the Binomial Theorem

Approximations: We have seen in the particular cases of the expansion of (I1+ x)”

(vi) (1-x)7 =14+3x+6x" +10x> +...+

that the power of x goes on increasing in each expansion. Since | X | <1,so
| X |r <| X | forr=2,3,4, ...
This fact shows that terms in each expansion go on decreasing numerically if |x| <.

Thus, some initial terms of the binomial series are enough for determining the
approximate values of binomial expansions having indices as negative integers or
fractions.

Summation of infinite series: The binomial series are conveniently used for
summation of infinite series. The series (whose sum is required) is compared with
n(n2!— D x*+ n(n 1;!(11 —2) X+

to find out the values of n and x. Then the sum is calculated by putting the values of n

1+nx+

and x in (1+x)".
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1/3

Example 16: Expand (1-2x)"*to four terms and apply it to evaluate (.8)""’ correct to

three places of decimal.

. . : . 1 :
Solution: This expansion is valid only if |2x| <1 or 2|x| <lor|x|< 5 ,thatis

(1), AT
(1—2x)1/3=1+%(—2x)+L(—2x)2+ 313 3 Jowyi-..

2! 3!
) 55 )
2 3 3 2 3 3 3 3
- x+2 274 —8x7%)—
3 o 2.1 @)+ 3.2.1 (-8x7)
zl_ix_i 2_£_L 8x°) —
3 9 333 3.2.1
o2 A 40 s
3 9 81
Putting x =.1 in the above expansion we have
1/3_ 2 4 2 40 3
(1-2(.1)) =1 3(.1) 9(.1) 81(.1)
2 .04 .04
—l—g—T—ﬁ—... (. 40x.001=.04)

~1—-.06666 —.00444 —.00049 =1-.07159 =.92841
Thus (.8)'*~ .928
Alternative method:

v _ ;. 2 303 > 313 3 3
(.8 =(1-.2) —1—§+T(—.2) + 3 =2y +..

Simplify onward by yourself.

Example 17: Evaluate 3/30 correct to three places of decimal.

1
Solution: 3/30=(30)"3 = (27 +3)?

3 1/3 1 1/3
=271+ — =27 1+ —
27 9
1/3
= 3[1+Lj
9




2 3 2
=31+l.l—l(lj +i(l) + ... =31+L—(ij + ...
39 919 81\ 9 27 \27
~ 3[1+.03704—-.001372] =3 [1.035668] = 3.107004
Thus 3/30 = 3.107

Example 18: Find the coefficient of x" in the expansion of (11 — x) 5
+x
] 1—-x 5
Solution: =(1-x)(1+x)
(1+x)?

= (= + D[l +2x+ (2)x + —(_2);_3) e (_3)"};5‘2‘ D vt ]
=(x+ D1 +ED2x+ DB+ .+ (D) xF+ 1D+ .0
=(x+ D[ +ED2x+ DB+ o+ D " () + Dx L]
Coefficient of x" = (=1) (-1)"'n+(-1)"(n+1)
=ED)"n+ D" (n+) = (=D)'[n+(n+D] = (-D".2n+1)
Example 19: If x is so small that its cube and higher power can be neglected, show

that Wfl_—x ~ 1—x+ix2
I+x 2
Y Lt SN
1+ x
1

Solutio
a0 T
= 1+—(—x)+L(—x)2+... 4o e 2 2 Jeg
2 2! 2 2!
= l—ix— 1x2+...|—| l—-—x+ x2 4+ ... |—|
2 8 '| d
= l—ierix2 + —LerLx2 —Lx2+ |—|
2 8 2 4
=1- L + E+l—1 : l-x+—x
2 2 8 4 8
5
2 3
Example 20: For y:i i + 1.3 i +1'3'5 i +
219 22210 9 2331 9

show that 532 + 10y —4 =0
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2 3
Solution: y:L i +£ i +1'3—'5 i +... (A)
219 4210 9 831\ 9
Adding 1 to both sides of (A), we obtain
2 3
1+y:1+L i _|_£ i _|_1'3_'5 i + ... (B)
219 421\ 9 831( 9

Let the series on the right side of (B) be identical with

n(n—1) 4 n(n—-1)(n-2) [
! 3!

which is the expansion of (1+ x)" for| x | < 1and n is not a positive integer.

1+ nx+

On comparing terms of both the series, we get

nx :%(%j (1)

b 3(4)
F . 2
rom (1), X =5, (111)

2
Substituting x =on in (i1), we get

n(n—l)(ijz 3 16 nn-1) 4 3 16

2 \on) 80T T2 s s sl
1
or 2(n—1)=¢6n or n—1:3n:>n:—5
. 1. .. 4
Putting n=-—-in (ii1), we get x:—=—7

4 —1/2 5 —1/2 9 1/2 3
9 9 5 5

or  5(1+y)=3 (iv)
Squaring both the sides of (iv), we get
51+2y+y?)=9 Or 59°+10y—4=0.
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10.

P~ EXERCISE 8.3 4

Expand the following upto 4 terms, taking the values of x such that the expansion

in each case is valid.

! e
i (d+x)™""° (i) (4-3x)"* (iii) 1= x) 5 (iv) I+ 2x
(1+x) I-x
Using Binomial theorem find the value of the following to three places of
decimals.
! 1 J7
i) 99 (i) (1.03) (iii) (iv) Y2
3252 V8
Find the coefficient of x" in the expansion of
L l+x? L (I+x)?
i iy 4
(1+x) (1-x)
If x 1s so small that its square and higher powers can be neglected, then show that
() =X 812y i) Y2 g2
Vl—x 2 Nl-x
. 1/2 _ 1 1/4 1 1 )
(iif) (9+7x) 16+ 3x) z———7x (iv) V4+x z2+§x
4+ 5x 4 284 (1-x)* 4

If x is so small that its cube and higher power can be neglected, show that
. 1 . 1
() VIcx—2e ey 2xr (i) [ e ra
2 8 1-x 2
If x is very nearly equal 1, then prove that px? —gx? = (p — q)x?*?

Identify the following series as binomial expansion and find the sum.

(L 3y 13S0 1Y
2 4 ) 214 4 318( 4

I 13 135

Use binomial theorem to showthat1+—+—+7+...:\6
4 48 4.8.12
1 13( 1Y} 135(1Y ,
Ify= —+—=| — | +==| — | +.., prove that +2y-2=0.
Y73 2!(3} 3!(3} P b
1 1.3 1 135 1
If2y=—+ —+ +...,prove that 4y> +4y—-1=0

22 9l 24 3] 6
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8.4 Binomial Coefficients Using Pascal’s Triangle
Binomial coefficients arise in the binomial expansion of powers of a binomial
expression, such as (x + y)". These coefficients are denoted by:

n n!
=—— where0<r<n.
r rl(n—r)!
Pascal's Triangle provides a combinatorial method to compute binomial coefficients
without directly using factorials. The construction of Pascal's Triangle follows these rules:
1. The first row (corresponding to n=0) consists of a single entry: 1.
2. Each subsequent row begins and ends with 1.
3. Every interior entry is the sum of the two entries directly above it from the

previous row.
Rows

Pascal’s Triangle

AN A WD = O

o 1 2 3 4 5 6 7 —» Columns
Mathematically, this is expressed by Pascal's Rule:

-1 -1
Pascal’s Rule: | |=| "~ |+|” , for O<k<n
k k-1 k

The entries in the n-th row of Pascal's Triangle correspond to the binomial

n)(n n
coefficients , e
0)\1 n

For example, the binomial coefficients corresponding to n = 4 are:

S (e Ee (3 0

Example 21: Expand (x + y)* using Pascal’s triangle.
Solution: The binomial coefficients for the expansion of correspond to the entries in
the n=4 row of Pascal’s Triangle: 1 4 6 4 1
Thus, the binomial expansion using Pascal’s triangle is
(x+ y)* = Ix* + 4%y + 6x%7° + 4x)’ + 1Y
(x+ ) =x*+ 43y + 6xH72 + 4xy® +
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Example 22: Expand (x — 2)° use the Binomial Theorem and using Pascal triangle.

Solution: Expand using Binomial Theorem:

(c+ 2)5 =5Co %% (£ 2)° +5C; x5 (= 2)! +5C x5 2)2 + 5C3 #73(= 2) + 5Ca4 (- 2)°
+5Csx55(= 2)
=x> — 10 x*y + 40 x*y? — 80 x*)* + 80 xp* — 32y°.

The binomial coefficients for the expansion of correspond to the entries in

the n=5 row of Pascal’s Triangle: 1 5 10 10 5 1

(@a+ by =Coad® B’ +°C1a*b' +°Cra® b* +°Cs &° b* +°Caa' b* +°Cs a® b°

Replace binomial coefficient from Pascal triangle and a = x ,b = -2

x+2P=x =2 +5x*2)'+10x°(=2 >+ 10X’ (= 2)* + 5x (- 2)*+ (- 2)°
=x> — 10 x*y + 40 x*y? — 80 x%)* + 80 xp* — 32y°.

8.5 Application of Binomial Theorem

8.5.1 Finding the Remainder using Binomial Theorem
Example Find the remainder when 8'%° is divided by 7.
Solution: Express 8 in terms of a multiple of 7.
8=1+7

8100 = (] 4 7100
Using binomial theorem
(1+7)190="0C 71" + "°C, 771 + ..+ "°C, 717 + 1°C,, 71
We see that all terms in the sum are divisible by 7 except the last term i.e.'”C,,, 7°1'"
So, remainder will be given by the last part.
Remainder = '°C,, 71 =1-1-1=1
Example 23: Find the remainder when 2'% is divided by 3.
Solution: We calculate the binomial expansion.

2100 — (3 _ 1)100

_ 100 3100 10 100 399 11 100 398 12 100 30 1100
=y PV BED D | D)

=3'" —(100).3” +4900.3% —...— (100)(3) +1
=3[3” - (100)3” + (4900)3”" —...—100]+1
=3xanintiger+1

This shows that 2!% leaves the remainder 1 when divided by 3.
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Example 24: Find the unit digit of:
0 (@432 ) @577 (iii) (747
Solution: (i) Now 126 can be writing as: 126 =4 x 31 +2
Since, the remainder is “2”
So,3?=9
Hence the unit place digit of (43)'%% is 9.
(i) (257"
As the Unit place digit is “5” which always remains 5 at unit place.
(iii) (74)*Y
Now 247 can be written as:
247=4x%x61+3
Since, the remainder is “3”.
So, 4° = 64
Hence the unit place digit of (74)** is 4.

Example 25: If the fractional part of the number % is % then find .

2504 24 2500
31 31
24 (25 )100
S

Solution:

16 100
=—(32

31( )

16 100
=—(31+1

31( )

16
=—(31h+1
31( )

:16h+E
31

8h is an integer, fractional part = ;—61

So, k=16

Finding Digits of a Number
Example 26: Find the last two digits of the number (11)2.
Solution:
(11)2 = (1120
(1D =(121)¢
= (120 + 1)®
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=0C, (120)° +6C1 (120)° (1)! + 5C (120)*(1)* + °C5 (120)°(1)* + °C4 (120)*(1)* +
Cs (120)'(1)° + Cs (1)°

=0C, (120)° +6C (120)° + 6C5 (120)* + °C3 (120)° + °C4 (120)* + °Cs (120) + 1

A multiple of 100 + 6(120) + 1 = 100k + 72. The last two digits are 21.

Divisibility Test

Example 27: Show that (15)"* + (13)" is divisible by 14.

Solution: (15)2 + (13)° =14+ DB + (14 - 1P

— [ISCO x (14)13 4 13C1 (14)12 4 13C2(14)11 +...+13C13] 4 [ISCO x (14)15 _ 15C1 (14)14 4
BB —BC(14)12+ ...+ BC1a(14) - BCis)

=BCox (147 + PCrx (142 + B x (14 4.+ 1+ PCo x (14)° = BCy (14)™
+..4 PCu(14) - 1]

=14[PCo x (1492 + BCi(1H)" + PG (0" + .+ 1+ PG4 = PO (14)P + . +
5Ci4]

= 14k

Which is divisible by 14.

8.6 Real Life Application of Binomial Theorem and

Mathematical Induction
Here are some examples applying the concepts of mathematical induction and the
binomial theorem to real-world problems such as Puzzle, domino effect, Pascal's
Triangle, Economic Forecasting, Rankings, and Variable Subletting.
Estimating Costs in Supply Chains (Binomial Theorem)
Example 28: A company wants to estimate the total cost of producing and delivering
a product using a supply chain. Each stage of the chain (production, packaging,
shipping) involves additional costs due to inefficiencies. If the base cost of production
is C, and each stage adds inefficiency costs, modeled by (1+ x)" where x is the
inefficiency rate per stage and n is the number of stages, estimate the cost for small
values of x.
Solution: The binomial theorem allows us to expand (1+ x)" when x is small, giving a
more manageable approximation.

(1+x)"=1+nx+ @xz-F

For small x, we can approximate the total cost by only taking the first few terms of
the expansion.

Let’s say C = Rs. 100,000, the inefficiency rate x = 0.05 (5%), and there are n = 3
stages (production, packaging, shipping).

The total cost is: Cost = C x (1+x)" =100 x (1 + 0.05)".
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Expanding using the binomial theorem:

(140.05) =1+ 3(0.05)+ 33 —1)/2(0.05>=1+0.15+0.0075 = 1.1575
Thus, the total cost is approximately:

Cost = 100,000 x 1.1575 = 1157500.

This means the total cost is Rs. 1,157,500, which includes inefficiencies.
Mathematical Induction: Domino Effect
Example 29: A line of 100 dominoes is set up so that when the first domino falls, it
causes the second domino to fall, and so on. Prove that if the first domino falls, all 100
dominoes will fall.
Solution: Base Case (n = 1): For 1 domino, if it falls, it’s true that it has fallen.
Induction of Hypothesis: Assume that for n = k. if the first k dominoes fall, then the
k™ domino will also fall.
If the first £ +1 dominoes are set up, and the first domino falls, then all dominoes, up
to the (k +1)™, will fall. If the first k dominoes fall (inductive hypothesis), then (k +1)"
domino will also fall.
Thus, by mathematical induction, if the first domino falls, all 100 dominoes will fall.
Economic Forecasting with Compound Interest
Example 30: A bank offers a compound interest rate of 5% per year. Sumaira invests
Rs. 100,000 for 3 years. How much will her investment be worth at the end of 3 years?
Solution: Using the compound interest formula, the future value a of the investment is

nt

given by: A= P[1+ I
n

where: P = 100,000 (the principal), » = 0.05 (the interest rate), n = 1 (compounding
once per year), f =3 (the time in years).
Substitute the values: A=100,000x (1 + 0.05)""3 =1000 x (1.05)*
Using the binomial expansion for (1.05)°:
(1+ 0.05)° = 1 + 3%0.05 + 3 x (0.05)* + (0.05)°
=1 +0.15+0.0075 + 0.000125 = 1.157625
Now calculate the future value: A = 100,000 x 1.157625=115762.5
So, after 3 years, the investment will be worth Rs. 115762.5.
Variable Subletting and Growth in Supply Chain
Example 31: In a supply chain system, a company starts with an initial inventory of
500 items. Every month, they sell 60% of the inventory and restock 100 items. How
many items will they have after 6 months? Use mathematical induction to prove the
pattern.
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Solution: Each month, 60% of the inventory is sold, meaning only 40% remains. And
100 items are restocked every month.
Let I, represent the inventory after » months. The recurrence relation is:
Li+1=0.41, +100.
We can use induction to prove the formula.
Base Case: n = 0, The Initial Inventory is: 7, = 500.
Inductive Hypothesis Assume that after » months, the inventory 7, is expressed by
the formula: 7, = 250 + 250 x (0.4)"
This is our inductive hypothesis. We assume it holds for some n=k. Now, we need to
show that the formula also holds for n = k£ +1.
We need to prove that if the formula holds for /. then it also holds for /1 i.e.,
T +1=250 + 250 x (0.4)"!
Start with the recurrence relation:
Ii+1=0.41+ 100
Substitute the inductive hypothesis /=250 + 250 x (0.4)* into this equation:
Ire1=0.4 % (250 + 250 x (0.4)) + 100
Distribute 0.4 across the terms:
Ti1=0.4 x 250+ 0.4 x 250 x (0.4)F + 100
T+1 =100+ 100 x (0.4)* + 100
Tir1 =200+ 100 x (0.4)F
Notice that 200 can be rewritten as 250 — 50, so:
T 1=250 — 50 + 100 x (0.4) <!
Thus, the formula holds for n = k£ + 1, completing the inductive step.
Conclusion: By the principle of mathematical induction, since the base case holds
and the inductive step has been proven, the formula:
1, =250 + 250 x (0.4)"is valid for all n > 0.
Now that we have t formula, we can calculate the inventory after 6 months by
substituting # = 6 into the formula:
Is =250+ 250 x (0.4)°
First, calculate (0.4)%: (0.4)° = 0.004096
Now, substitute this into the equation:
Is =250 + 250 % 0.004096 = 250 + 1.024 = 251.024
So, after 6 months, the inventory is approximately 251 items.
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10.

1.

12.

13.

P~ EXERCISE 8.4 4

Find unit place digits in:

(i) (255 i) (74)% (iii) (573)%
Find the last two digits of the number:
i an- (i) (43) (i) (9"

Find the remainder using binomial theorem when:

(i) (33)°lisdivided by 17 (i) (9)'% is divided by 41

Show that a® + (a + 2)* + (a + 4)* + 1 is divisible by 12, whenever “a” is an odd
integer.

Show that (15)"3 + (13)" is divisible by 14.

Approximate the following:

(i) (1-0.02)*° (i) (1-0.01)'%

Find the binomial coefficient (3C3) using Pascal's triangle.

A company expects its annual revenue to grow at a fixed rate of 6% per year. The
revenue in year 1 is R = Rs. 10,000,000. Estimate the company’s revenue after
4 years using the binomial theorem for small growth rates.

In a supply chain system, a company starts with an initial inventory of 400 items.
Every month, they sell 80% of the inventory and restock 50 items. How many
items will they have after 8 months? Use mathematical induction to prove the
pattern.

A bank offers a compound interest rate of 10% per year. Zafar invests
Rs. 2,000,000 for 4 years. How much will his investment be worth at the end of
4 years?

Zaid is organizing a sports competition with 8 teams. Every team plays against
every other team exactly once. How many matches will be played in total? Use
Pascal's triangle to solve this.

A line of 70 dominoes is set up so that when the first domino falls, it causes the
second domino to fall, and so on. Prove that if the first domino falls, all 70
dominoes will fall.

A company starts with an initial inventory of 1,000 items. Each month, the
company restocks 100 items and expects inventory costs to grow at 2% per month
due to inflation. Use the binomial theorem to estimate the inventory cost after 6
months.




Division of Polynomials

INTRODUCTION

Polynomials play a fundamental role in algebra and have wide-ranging applications
in various fields, including engineering, data science and digital communication. This
unit explores polynomial division to determine the quotient and remainder. The
remainder theorem is introduced as a powerful tool for evaluating polynomials
efficiently, while the factor theorem is applied to factorize cubic polynomials. These
concepts extend beyond theoretical mathematics, finding practical applications in
polynomial regression, signal processing and coding theory. By mastering these
techniques, students will develop a deeper understanding of polynomials and their
significance in solving real-world problems.

9.1 Polynomial Function
A polynomial in x is an expression of the form
ax"+a, x""'+a, X" +..+a,x +ax+a, (1)

Where n is a non-negative integer and the coefficients a,,a, |,a, ,, ..., a, and a,are

n—-1°>"n-2>
real numbers. It can be considered as a polynomial function of x, the highest power of
x in a polynomial is called the degree of the polynomial. In the expression (1) if

a, # 0 then it is a polynomial of degree n. The polynomials x* — 2x + 3,

3x’ +2x* —5x+4 are of degree 2 and 3 respectively.
Example 1: Divide the cubic polynomial 3x* —10x*> + 13x — 6 by the linear
polynomial x — 2. Also find quotient and remainder.

Solution: 3P Ay 5
x=2) 3¢ 108+ 13x—6
_3x3; 6x”
—4x" + 13x
2
At &
S5x -6
_5x 710
4

Hence, we can write: 3x° — 10x> + 13x — 6 = (x — 2)(3x* —4x + 5) + 4
So, quotient = 3x*>— 4x + 5 and remainder = 4
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Example 2: Divide the polynomial x*— 3x* + 5x>— 7x + 2 by x>~ x + 1. Also find
quotient and remainder.
Solution: X —2x+2
X —x+ 1) =3+ 55" - Tx+2
¥ X+ ¥
¥ _
—2x’ + 4%’ —Tx
12)c3 + 2x° T2x
2%’ —5x+2
2 = 2x+2

—3x

So, quotient = x*> — 2x + 2 and remainder = —3x
9.1.1 Remainder Theorem
Statement: If a polynomial f(x) of degreen>1 is divided by x—a till no x-term
exists in the remainder, then f'(a)is the remainder.
Proof: Suppose we divide a polynomial f(x)by (x—a) . Then there exists a unique
quotient ¢g(x) and a unique remainder R such that

Jx) =(x—a)gx) +R (1)
Substituting x =a in equation (i), we get

J&) =(a—a)g(a) + R

f@)=R
Hence remainder = f'(a)
Example 3: Find the remainder when f(x)=x"+x’+x”+1 is divided by x+1
without performing division.
Solution: Here f(x)=x'+x"+x’+1and x—a=x+1=a =-1

Remainder = f(-1) (By remainder theorem)
=D DDA
=1+(-D+1+1=2

Example 4: Find the value of & if the polynomial x° + kx> —7x+ 6 has a remainder
—4, when divided by x+2 .
Solution: Let f(x) =x>+ kx> - 7x + 6 and x — a = x + 2, we have, a = -2

Remember =f(-2) (By remainder theorem)
= (2)* + k(-2)* - 7(-2) + 6
=-8+4k+14+6

=4k +12




Unit o Remainder and Factor Theorem <72> Mathematics

Given that remainder = —4

4k+12=—-4
= 4k =-16
= k=-4

9.1.2 Factor Theorem
Statement: The polynomial x—ais a factor of the polynomial f(x)iff f(a)=0.In
other words x —a is a factor of f'(x)if and only if x= a is the root of the polynomial
equation f(x)=0.
Proof: Suppose g(x) is the quotient and R is the remainder when a polynomial f( x) is
divided by x — a, till no x-term exists in the remainder, then by remainder theorem
f(x) =(x—a)g(x) + R
Suppose f(a)=0 = R=0
J(x) =(x—a)q()
(x — a) is a factor of f( x)
Conversely, if (x — a) is a factor of f(x), then f(x) = (x — @)g(x) for some polynomial g(x)
f(a)=0
which proves the theorem.
Example 5: Show that x — 2 is a factor of f(x) = x’ — 7x+ 6 without factorizing.
Solution: Here,  f(x)=x-7x+6and a=2
f(2)=23-712)+6 (By factor theorem)
=8-14+6=0
So, x—2is a factor of f(x).
- To determine if a given linear polynomial X—da is a factor of f(x), we need to check
whether f(a)=0.
Example 6: If x+1and x— 2 are factors of x° + px” + gx + 2. Find the values of p and q.
Solution: Let f(x)=x>+px*+gx+2
Since, x + 1 is a factor of f(x).
So, f(-H)=0 = -1+p—qg+2=0

p—qg=—1 ...(1)
Similarly, x —2 is also a factor of f(x).
So, f(2)=0
8+4p+2¢g+2=0
4p +2g=-10

2p+q=-5...(ii)
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By adding (i) and (ii), we have

p=-2

Put p =—-21n (i), we have

g=pt+tl=-2+1=-1
9.1.3 Synthetic Division
There is a nice shortcut method for long division of a polynomial fix) by a
polynomial of the form x —a. This process of division is called Synthetic Division.

To divide the polynomial px’ +gx* +cx+d by x—a

a|pP 49 ¢ d <— firstline

| [ ] [[] <«—— Second line

;/ Vv .
(][] [] <« thirdline

—
Coefficients of Remainder

quotient

Out Line of the Method:
(1) Write down the coefficients of the dividend f(x) from left to right in
decreasing order of powers of x. Insert O for any missing term.
(i)  To the left of the first line, write a of the divisor (x — a).
(ii1))  Use the following patterns to write the second and third lines:
Vertical patter (1) Add terms
Diagonal pattern () Multiply by a.
Example 7: If (x — 2) and (x +2 ) are factors of x*—13x?+36. Using synthetic
division, find the other two factors.
Solution: Let f(x)=x*—13x>+36
=x*+0x’ —13x> - 0x+36
Herex—a=x-2 =x=2andx—a=x+2=x—(-2) =>x=-2
By synthetic Division:
21 0 -13 0 36
2 4 -18 -36
211 2 -9 -1810
-2 0

18 e Remainder
0 9] —

. Quotient = x> +0x+9= x>-9=(x+3)(x—3)
Therefore, other two factors are (x + 3) and (x — 3).
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10.

P~ EXERCISE 9.1

Find remainder and quotient by simplifying the following:

(i) @Bx*=x+2)+ (x-1) (i) (P +12x"=3x+4)+ (x=2)
(iii) (x*=5x =8x* +13x+12)+ (x—6) (iv) (5x*=3x"+2x*—1)=+ (x’ +4)

(v) Bx'=5x"+4x—-6)+ (x*=3x+5)

Use the remainder theorem to find the remainder when the first polynomial is
divided by the second polynomial.

(i) xX*+5x+6 , x=2 (i) X +5x*+6 , x+1

(i) x*+x+x"+x+1 ,x-1 (iv) x*+x*+1, x+3
v) x*+x+2 , x+2

Use the factor theorem to determine if the first polynomial is a factor of the
second polynomial.

i x+1, x* -1 (i) x—2,x>-5x+6

(iii) x+1 , X +x"+x-3 (iv) x=2, X +x"—Tx+2

v) x-3, x'-3x+x"—x+1

Use synthetic division to show that x is the zero of the polynomial and use the
result to factorize the polynomial completely.

(i) x—=7x+6, x=2 (i) x"—28x-48, x=-4

(iii) 2x*+7x’ —4x* -27x-18, x=2,x=-3

Use synthetic division to find the quotient and the remainder when the
polynomial x* —10x” —2x+4 is divided by x + 3.

If x + 1 and x — 2 are factors of x’ — px* + gx+2.Using of synthetic division
find the values of p and g.

When the polynomial 4x* +2x” + kx* +13 is divided by x +1, the remainder is
16. Find the value ofk .

When the polynomial x* + x* + x + kis divided by x—1, the reminder is 7. Find
the value ofk .

Use factor theorem to find the values of p and ¢ if x+1 and x — 2 are the factors

of the polynomial x* + px* + gx + 3.
Use factor theorem to find the values of a and b if —2 and 2 are the roots of the
polynomial 2x° + 4x* + ax+b .

9.2 Real Life Applications of Remainder and Factor Theorems
In this article, we will demonstrate how remainder and factor theorems are applied in

different areas such as polynomial regression (used in statistical modeling), signal
processing (used for filtering and error detection) and coding theory (used in data
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encryption and error correction in communication systems). These applications
highlight the significance of polynomial analysis beyond theoretical mathematics.

Polynomial Regression: It is a type of regression analysis where the relationship
between the independent and dependent variables is modeled as an n'"-degree
polynomial. It is used when the data shows a curved (non-linear) relationship, but we
still want to fit a smooth, continuous function.

Example 8: Consider a data set of monthly sales figures. A polynomial regression

model P(x)=x"+x>+2x+1 is fitted to this data. If the observed sales in the
3™ month are 40 units, find the percentage error.
Solution: Error = Observed — Predicted =40 — P(3)
Now, P(3) =3*+32+2(3)+1
=27+9+6+1=43
Error=40-43=-3

So, Percentage Error = ‘;—(3) x100=7.5%

Example 9: A quadratic regression model is P(x) = x” +ax+12. If regression model

fitted accurately at x = —3, then find the value of a.
Solution: By factor theorem
If x =-3 is aroot, then P(-3) =0

(3 +a(-3)+12=0

9-3a+12=0
21-3a=0
a="17

Digital Signal Processing (DSP): It is used in computers or digital devices to
analyze, change or improve signals like sound, images or sensor data. The remainder
theorem is a powerful mathematical tool in DSP that simplifies the evaluation of
system responses, stability checks and frequency analysis. If the remainder is zero, it
means that the system has no error at that input.
Example 10: A digital signal processing system is represented by the polynomial
P(z) = z* — 322 + 222 + z — 5. Find the system response at z =—1using the remainder
theorem.
Solution: By remainder theorem

Remainder = P(-1)

= (D) =3=1) +2(-1) +(-1)=5=1+3+2-1-5=0

Since P(—1) = 0, therefore the system has no error at z=—1
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P~ EXERCISE 9.2 4

1. Consider a data set at monthly sales figures. A polynomial regression model
P(x)=x"+2x"+x-3 is fitted to this data. If the observed sales in the

5" month are 240 units, find the percentage error.
2. A dataset is modeled by the polynomial P(x)=x’ —4x”+5x—2. Find whether

the point x = 2 lies on the curve.
3. Designing a low pass filter to remove high frequency noise from an audio

signal, the filter is represented by the polynomial P(x)=x’ +x* +2x+ 4. Find

whether x+1 is a factor.

5. Consider a signal processing system represented by the polynomial
S(x) = 2x* — 5x* + 4x — 3, where x is the input to the system. Answer the
following questions:

(1) If the input to the system is x =2, find the remainder.

(i1)) Determine whether the system has a specific characteristic such that when
x = 1, the system response becomes zero. If so, identify the factor.

6.  Consider a signal represented by the polynomial S(t)=3t" -2t . If the input to
the system is ¢ =4, find the remainder by using remainder theorem.

7. Given a signal represented by Q(f) = £ -6t +11t-6 , determine if the system
response is zero at ¢ =4. If so, identify the factor.

8. A received message polynomial is P(x)=x"+x’+x+1 and a known error-
detecting polynomial is g(x) = x+ 1. Find whether the received message is error-

free using the remainder theorem.



Trigonometric Identities

INTRODUCTION

In this section, we shall first establish the fundamental law of trigonometry before
discussing the Trigonometric Identities. For this we should know the formula to find
the distance between two points in a plane.

10.1 Distance Formula: (Recall)

Let P(x,,y,) and Q(x,,y,)be two points. If “d” denotes the distance between them,

then d=|P_Q|:\/(x1_x2)2+(y1_y2)2

or = \/(xz—x1)2+(y2—yl)2
Example 1: Find distance between the following points:
i 438 ,  B(56)

(i) P(cosx,cosy),Q(sinx, sin y)

Solution:

(i) Distance = | AB |[=y/(3=5)> +(8—6)° =4 +4 =22

(ii) Distance = ‘P_Q‘ = \/(cosx —sinx)’ + (cos y —sin y)>

— Jcos? x+sin’ x—2cosx sinx +cos> y+sin’ y—2cosy sin y

\/2— 2cosxsinx—2cosy sin y

= \/2— 2(cosxsin x+cos y sin y)
10.1.1 Fundamental Law of Trigonometry
Let  and £ be any two angles (real numbers), then
cos(a —ff)=cosa cosf +sina sinf

which is called the Fundamental Law of Trigonometry.
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Proof:  For our convenience, let us assume that o > > 0.
Consider a unit circle with centre at
origin O.

Let terminal sides of angles o and £ cut

the unit circle at 4 and B respectively.
Evidently mZAOB =a -

Take a point C on the unit circle such that
m/ZXOC=mLAOB = a—p.
Join 4,B and C,D.
Now angles @, £ and a — f are in standard position.
. The coordinates of 4 are (cos «, sin Q).
The coordinates of B are (cos f, sin f3)
The coordinates of C are (cos o —f , sina—f3 )

and the coordinates of D are (1, 0).
Now A4AOB and ACOD are congruent. [(S4S) theorem]

- - _2 —_—2
Therefore, ‘AB‘:‘CD‘ = ‘AB‘ - ‘CD‘

Using the distance formula, we have:

(cos a — cos B)? + (sin a — sin B)? = [(cos(a—B)—1]*+ [sin (a—pB) — 0]*
=  cos’ a+cos’ B — 2 cos acos B+ sin® a + sin® B— 2sin a sin 3

= cos?(a —B) + 12 cos(a — f) + sin*(a — )
= 2-2(cosacosf+sinasinf)=2-2cos(a —[)
Hence cos (¢ —f) = cos a cos f+ sin a sin f.

W[11'H8 Although we have proved this law for & > > 0, it is true for all values of « and f.
Suppose we know the values of sin and cos of two angles « and £, we can find
cos(a — ) using this law as explained in the following example:

Example 2: Find the value of sin % .

Solution: As 5—7[ =75°=45°+30° = £+7£
12 4 6

. Sz . T T . T T V/ /4
SiIn — = S| —+— |=SIM—CO0S— + COS—SIn—
12 46 476 476
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10.1.2 Deductions from Fundamental Law
1. We know that:

Mathematics

cos(a — ff) =cos a cos f+ sin o sin

Putting o= % in it, we get
V4 T LT
cos| ——pf |= cos—cosfF +sin—si
( 2 p j 2 p 2 w

= cos(%—ﬂJZO.cosﬂJrl.sinﬁ

cosZ =0, sinz =1
2 2

cos [% -p )z sinf (1)
2. We know that:

cos (a— ) =cos acos f+sin asin f

Putting = —% in it, we get

co{a—(—%] = cos a. cos(—%] + sin & sin (—%j

) T .
sm(—5]= _sz =-1
= cos(a+£} = cos .0+ sin a(-1)
2 T Vs
cos| —— |=cos—=0
5 e
cos (%+aj= —sing (ii)
3.  We know that:
cos g - ,B) = sin [(i) above]

Putting = E+a n it, we get

o [5{5e el
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(7
= cos(—a) = sm(5+a)
. (r
= cos a = sin (E+a] [ cos(—a) = cosa |

. (7
sin (E +a j= cosx (111)

4. We know that:
cos(a— ) = cos acos f+sin asin f
Replacing S by - we get
cos[a—(—f)] = cos acos (- f) + sin a sin (— f)

[ cos(-f) = cos B, sin(-f) = —sinﬁ]
= cos(a + f)=cosa cosf —sina sinfs (iv)

5. We know that:

cos(a+ ) = cos acos f—sin asinf

Replacing o by %+ o, we get

V4 _ L [T .
cos Kz+aj+ﬂ} = cos (2 +a)cos,6’ sm(2 +a}smﬂ

= cos[%+(a+ﬁ)|} =—sin o cos f— cos a sin B
= —sin(a+f) = —[sin & cos f+ cos « sin ]
sin(a + f) =sina cos B +cosa sin B (V)

6. We know that:
sin(a + ) =sin a cos + cos a sin [from (v) above]

Replacing S by — S, we get

sin(a— f)=sin acos (- f) +cos asin(-f) |7 ML) = o0

sin(a — f) =sina cos f —cosa sinf (vi)
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7.  We know that:
cos(ex—f)=cosacos f+sina- sin S
Leta=2zand f =¢

cos(2r— 6) =cos 2x. cos @+ sin 27 sin 6

=1-cos@+0-siné CQSZﬁzl
sin 2z =0

=cos ¢ (vii)
8. We know that:
sin(d—f) =sina- cos f—cos - sinf

sin(2z— @) =sin 27 cos € — cos 2 sin &

=0.cos@—1.sind sin 277 = 0
cos 27 =1
=—sin 4 (viii)
sin(ax + sina cos ff +cosa sin
9. tan(a + ) = @+f) _ p : . b
cos(a +f) cosa cosf—sina sinf
sina cosf3 | cosa sin 3 Dividing
_ cosa cosfB cosa cosfB numerator and
cosa cosf  sina sinf denominator by
cosa cosff cosa cosf cosa cos3
tano + tan .
tan(a + ) = tana +tanf (ix)
1-tana tanf
sin(x — sin cosff —cosa sin
10. tan(a — ) = @=p) _ p : : p
cos(¢ —f})  cosa cosf +sina sinf
sina cosff cosa sin 8 Dividing
_ cosa cosf cosa cosf numerator and
cosa cosf N sina sinf denominator by
cosa cosff cosa cosf cosa cos3
tan o — tan
tan(a —f) = P (x)

1+ tana tanf
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10.2 Trigonometric Ratios of Allied Angles

Two angles a and 3 are said to be allied, if a + f§ =n(90°), n e z
For example, + a, 90° +a, 180° + a, 270° £ a and 360° + a are some allied angles of a.

Using fundamental law of trigonometry, cos(a— ) =cos a cos + sin a sin  and its
deductions, we derive the following identities:

sin(z—ejzcos 0, cos(z—é’j:sin 0, tan(z—9j= cot &
2 2 2
sin(%+0]=cos 0, cos(%ﬂé’]:sin g, tan(%JrHj:—cot 0

sin(z—6@)=sin @ , cos(x—0)=-—cos @, tan(r —0)=—tan 0
sin(r+6)=-sin 8, cos(r+6)=—cos 8, tan(r +6) =tan 6

sin(3—”—9j=cosﬁ ,005(3—”—0)=—sin 0,tan(3—ﬂ—6’j=cot0
2 2 2
sin(%+6j=—cos g, cos(%%ﬂj: sin 8, tan(%r+0j=—cot o

sin(2r —60)=—sin 6 , cos(2r —0)=cos 8, tan(2r —0) =—tan ¢
sin(2r+60)=sin 8 , cos(2r+60)=cos @, tan(2r +60)=tan &

The above results also apply to the reciprocals of sine, cosine and tangent. These results
are to be applied frequently in the study of trigonometry and they can be remembered
by using the following device:

1. If 6 is added to or subtracted from odd multiple of right angle, the
trigonometric ratios change into co-ratios and vice versa.
ie, sin > cos, tan > cot, sec > COsec
. (7 3z .
e.g. s1n(5—9j= cos & and cos(7+9j= sin @
) . V4 . )
2. If @ is added to or subtracted from an even multiple of > the trigonometric

ratios shall remain the same.
3. So far as the sign of the results is concerned, it is determined by the quadrant
in which the terminal arm of the angle lies.

e.g.sin(r— @) =sind, tan(r+H)=tanl, cos(2r— @)= cos 6.
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Measure of the angle | Quad.
Z_o I
2
Zi0orn-0 I
2
7T+ 6 or 37 o 11
2
3z
bl +6 or2n— 6 v

(a) In sin (1—0 j, sin (£+9
2 2

sin +ve All +ve

tan +ve cos tve

, sin(?’?ﬂ—é) and sin(%r+9j odd

L V2 .
multiplies of —are involved.

Therefore, sin will change into cos.

Moreover, the angle of measure

(1) (% -0 jwill have terminal side in Quad. I,

So, sin (%—9J= cos

(i) (% +0 jwill have terminal side in Quad. II,

So, sin [z
2

+9J=cos g,

(111) (3—7[ -0 jwill have terminal side in Quad. III,

2

So, sin (%—QJZ—COS 0;

(iv) (377[ +6 jwill have terminal side in Quad. IV,

So, sin (37”+0j=— cos 0.
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(b) In cos(r — @), cos(mw + ), cosQxr — €) and cos(2x + 8), even

multiples of %are involved.

Therefore, cos will remain as cos.
Moreover, the angle of measure
(1) (7— @) will have terminal side in Quad. II, therefore
cos(r— @) =—cos 0;
(i) (7 + @) will have terminal side in Quad. III, so
cos(r+ @) =—cos 6,
(i) (27— @) will have terminal side in Quad. IV, so
cos(2r— 0) =cos 6;
(iv) 27+ @) will have terminal side in Quad. I, so
cos(2m + ) =cos 0.
Example 3: Without using the tables, write down the values of:
(1) sin225° (i1) tan 600° (ii1)) cot(-225°) (iv) cosec (—420°)

1
Solution: (i) sin 225° =sin (180 +45)° =—sin45° = — —
2
(i1) tan 600° = tan (540 + 60)° = tan (6 x 90 + 60)° = tan 60° = /3
(iil))  cot (—225°) = —cot 225° = —cot(180 + 45)° = —cot(4x90+45)° = —(—cot 45°) =1

(iv)  cosec(—420°) = —cosec 420° = —cosec(360 + 60)° = —cosec(4x90+60)°
2
=—cosec 60° = =
NG
sin(180° — @) cos(360° —8&) tan(90° +6)

Example 4: Simplify: —
sin(90° — @) cos(180°+ ) tan(270° +80)

sin(180°—@) =sind , cos(360°—0) =cosl

Solution. Because {tan(90°+6) =-cotd, sin(90°—6) =cosé
|[cos(180° +60) =—cosd, tan(270°+6) = cotl
sinf-cosf- (—cotd) _  —siné

cos @-(—cosf)- cotl —cosf

Therefore, =tand
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P~ EXERCISE 10.1 4

1.  Without using the tables, find the values of:
(1) cos (- 1230°) (i1) tan (- 1035°) (ii1) sec(1140°)
(iv) cosec(— 690°) (v) cot(1320°) (vi) cos (—240°)

2. Express each of the following as a trigonometric function of an angle of positive
degree measure of less than 45°.

(1) cos 168° (i1)) sin 192° (ii1) cos 333°
(iv) tan213° (v) cos (-435°) (vi) sin219°
(vii) tan (— 597°) (viii) cos (—111°) (ix) sin (=390°)

3. Prove the following:
(1) sin(180° + &) sin(90 — @) =—sin & cos
(i) sin 810° sin 630° + cos 135° sin 225° = —%
(ii1) tan 150° cot 330° — 2sec 135° cosec 225° = -3
(iv) sin 210° + cos 240° + tan 225° + cot 225° = 1
4.  Prove that:
tan(180" +a) cot(90" — )
sin(360" —a) cos(270" + )

=—sec’a

sin’ (7 +6) tan (3; +0 j

(i1) 3 =cos ¢
cot’ (; -6 j cos’(mr —6) cosec(2r —6)

(iii) c0s(90° +0) sec(-0) tan(180°-60)
sec(360° —0) sin(180° +8) cot(90°—8H)

5. Show that: sec(h—QJsec 57[—6?)—tan 3—”—6’ tan 57[+¢9j—1
2 2 2 2

6. Ifa, B, y are the angles of a triangle 4ABC, then prove that

@) sin(a+p)=siny (i) sec (#): ese?

1
sin(ﬂ +7/)

(ii1) coseca = (iv) tan (a+ f) +tan y=0.
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10.3 Further Application of Basic Identities
Example 5: Prove that: sin(a + /) sin(a —f) = sin? a —sin’ (i)
= cos? § — cos’ a (ii)

Solution:  L.H.S. =sin (& + f) sin(a — f)

= (sin & cos f + cos «a sin f) (sin & cos — cos a sin f)

= sin® a cos? ff — cos? a sin’ B

= sin? a(1 — sin® B) — (1 — sin® &) sin? B

= sin? a — sin® a sin® B — sin? B+ sin® a sin? S

= sin? a — sin® B (i)

= (1 - cos? @) — (1 — cos? B)

=1-cos’a—1+cos’f3

=cos® f— cos® a (ii)
Example 6: Without using tables, find the values of all trigonometric functions of 105°
Solution: As 105° = 60° +45°

sin 105° = sin (60° + 45°) = sin 60° cos 45° + cos 60° sin 45°

(B L
cos 105° = cos (60° +45°) = cos 60° cos 45° — sin 60° sin 45°
(S FHE )58

tan 60° + tan 45°
1—tan 60° tan 45°

tan 105° = tan (60° +45°) =

_ \/§+1 _1+\/§
1-43-1 1-43
1 1-43

tan105°  1-/3

1 \/§+1

cosec 105° = =
sin105° 22

1 242

cos 105° 1-+/3

cot 105° =

and sec 105° =
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Example 7.  Prove that: cos1lP+sin 117 _ tan 56°

cos 11°—sin 11°

Solution: Consider

R.H.S= tan 56° = tan(45° + 11°) = 2043 +tanl]
1-tan45°tan11°
sin11°
1+tanl1° +cosll° cos11°+sinl1°
= = = : =L.H.S
I-tan11° ,_sinll®  cosl1°—sinl1°
cosll1°
“+sinll’ .
Hence cos| 11 i s%n - =tan 56’
cosll —sinll
Example 8: If cos o =— % ,tan f = % , the terminal side of the angle of measure o
is in the II quadrant and that of # is in the III quadrant, find the values of:
(1) sin (o + f) (i) cos(a+pf)
In which quadrant does the terminal side of the angle of measure
(a+ p) lie?

Solution: We know that sin® & + cos*> @ =1

2
’ 7 /576 24
Therefore, sina =zxil-cos’a ==%,[1-| —— | =+, | —=+—
( 25) 625 25

As the terminal side of the angle of measure of « is in the II quadrant, where sin « is
positive.
24

So sing = ——
25

2
Now secf == 4Jl+tan’ B =+ 1+(%) =i?

As the terminal side of the angle of measure of £ in the quadrant III, so sec £ is negative

sec -_B and cosﬂ=—i

5 13
2
sin i =+ {/l-cos’ B ==+ /1—(—%) =t f%:i%

As the terminal arm of the angle of measure £ is in the III quadrant, so sin £ is negative

. 12
sinff =— —
p 13
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sin (a¢+ ) =sina cos f+cos a sinf
(Bl B
25 13 25 13 325 325
and cos(a+f) =cosacosf— sinasinf
_ 7 5 24 12\ 35+288 323
- (_2_5)(_5)_(2_5)(_3)_ 325 325

As, sin(a+ f)is—ve and cos(a+ f)is +ve
Thus, the terminal arm of the angle of measure ( + £) is in the quadrant IV.

Example 9:  If o, B, yare the angles of A ABC, prove that:
(1) tan o +tanf+tan y = tan o tan B tan y
(i) tan ¢ tan’£+tan£ tanZ +tan L tan & =1

2 2 2

Solution: As «a,f, y are the angles of A ABC, therefore

a+p+y =180°
a+p =180°—y
(i) tan(a+ ) =tan (180° — y)

tana + tanf
——— =—tany
I-tana tanf
tan ¢ +tan f =—tan y+tana tan S tan y

tan ¢ +tan f+tan ¥ =tan o tan S tan y

(i) As a+f+y=180° = %+§+g:90°

SO g+£:90°—Z
2 2
tan(g+£j=tan(90°—zj
2 2 2
tang+tanli
22 _eqlo L
1—tangtan’[i 2 tanZ
2 2

Y B Y B

o o
tan— tan=+tan— tan==1—tan— tan—
2 2 2 2 2 2

tang tanﬁ+tan£ tanZ+tanZ tangzl
2 2 2 2 2 2
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Example 10: Express 3 sin 8+ 4 cos @ in the form 7 sin(€ + ¢), where the terminal side
of the angle of measure ¢ is in quadrant I.
Solution:  Let 3 =rcos ¢ (1)
and 4=rsin ¢ (i1)
Squaring then adding (i) and (ii)
32+ 42 =42 cos® ¢+ 1? sin® ¢

Dividing (ii) by (i)
4 .
= 9+16 = r*(cos’d +sinp) — = rsin ¢
, 3 rcosg
= 25=r 4
= S5=r 3 ~tan ¢
= r=>5
tang = —
¢ 3

3sin @+4 cos @ = rcos ¢gsin @+ rsin ¢ cos 6
7 (sin @ cos ¢ + cos @ sin @)
= rsin (6+ @)

where r=>5 and ¢ = tan™! 3

P~ EXERCISE 10.2 4

1. Without using table find the values of the following: Hint:

(i) sin 15° (ii) cos 15° (iii) tan 15° 15° = (45° - 30°) and

o . . . . 105° = (60° + 45°)
(iv) sin 105 (v) cos 105 (vi) tan 105
1
2. Prove that: (1) sin(45°+a)= —=(sin o+ cos @)
2
(11) cos(a +45°) = 2 (cos o — sin )

NG

3. Prove that: (1) tan(45°+A)tan (45°-A4)=1
(i1) tan(z -0 J+ tan(z—ke j: 0 (i) sin (6’ +Z j+ cos (9 +Z j: cos 6
4 4 6 3
in6@ 0t 0
S —costtan 0 1-tan6 tang cos(6 +¢)

(iv) =tan — (v)
cos O+ sinf tan 0 2 1+tan® tang cos(6 —¢)




Unit @ Trigonometric Identities <9> Mathematics

4. Show that: cos(a + ) cos(a— ) = cos? a — sin® = cos? f— sin’ &
5. Show that: sin(@ + §) +sin(a = §) =tan

cos(a + f)+cos(a —f)
cota cotf —1

cota +cotf

6. Show that: (i) cot(a+f)=

cota cotf +1 (iif) tana +tan S sin(a +f)

cot 5 —cota tana —tan B sin(a—p)

(i) cot(a—p) =

7.  Show that:

l+tana tanf l+cota tanf

(1) COS(“ —p ): W (i) s1n(a b ): coseca secf
- _ cota cotff +1 . tana+tanf _sin(a+ )
(i) cot(a—p) = cot fi—colr (iii) tana —tan S sin(a— f)
. s ) - cota cotf —1
(iv)  cot(a+pf) = cota + cotf

8. If sina:% and cos = E,Where 0<a<Z and 0<p< T
25 29 2 2

333

Show that sin(a — 3) s

9. If sina—]87 and cosﬁ—% Whel‘eﬁ[<a<27r and 7<f < 3';.Find

(1) sin(a+p) (i) cos(a+p) (ii1) tan (a+p)
(iv) sin(a—-pf) (v) cos(a—p) (vi) tan (a—p).

In which quadrants do the terminal sides of the angles of measures (¢ + f) and

(a—p) lie?
10. Find sin (e + f) and cos (a + ), given that

(1) tana= % ,Cos = % and neither the terminal side of the angle of measure

a nor that of £ is in the quadrant 1.

(i) tan a=-— 1@5 and sin f=- % and neither the terminal side of the angle

of measure a nor that of £ is in the quadrant I'V.

cos 19° +sin 19°
11. Prove that: - = tan 64°.
cos 19°—sin 19°

12, Prove that: cos(60° + ) cos(60° — 6) + sin(60° + ) sin(60° — &) = cos 26




Unit @ Trigonometric Identities <9> Mathematics

13. If a, B, y are the angles of a triangle ABC, show that
B /4 B .7

a o
cot—+cot—+cot—=cot— cot— cot—

2 2 2 2 2 2

14. If a+ B +y=180", show that: cota cot# +cot S coty+coty cotar =1

15. Express the following in the form rsin(6 + ¢)or rsin(6 — ¢) where terminal

sides of the angles of measures @ and ¢ are in the first quadrant:
(i) 24sin@+7cos@ (ii)) 12sin &—5cos O (iii) sin €— cos @

(iv) 8sin@ —6¢cosd  (v) %sin 6’+§ cos 0 (vi) 13sin 6 — 84cos 0
10.4 Double Angle Identities

We have discussed the following results:
sin (o + ) = sin @ cos S+ cos a sin
tana + tanf

cos(a+pf)=cosa cosff—sina sinff and tan(a+pf)= ————
l-tana tanf

We can use them to obtain the double angle identities as follows:
(1) Put pf =a in sin(a+ ) = sinacos f+cos asinf
sin (¢ + a) = sina cos a+cos o sin
Hence sin2 a =2sina cos a
(i) Put B =a in cos(a+pf)=cosa cosf—sina sinf
cos(d+ ) = cos @ cos a@—sina sin
Hence cos 2 a = cos® o — sin® «
cos 2 a = cos® o — sin® «
cos2 a = cos’ a— (1 - cos® a) (. sin? a=1-cos’ a)

= cos’a—1+cos’a
cos2a=2cos’>a—1
cos 2 o = cos® o — sin’ «
cos2 a = (1-sin’> a)—sin’ (. cos’ a=1-sin’ a)
cos2a=1-2sin’>a
tana + tanf

11l Put =gintan(g+ fl= ————
i / (@*h) l-tana tanf

tana + tana
tan(a + @) = ———
1-tana tana
2tana
tan2 g = ———

1—tan’a
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10.5 Half Angle Identities

The formulas proved above can also be written in the form of half angle identities, in
the following way:

; 1
(i) cos a=2 cos’ | o o ot s Eog /1+c0sa
2 2 2 ) 7
(i) cos a=1—2sinz% = sin? %:% = sin%=i 1—020sa
. I-cosa
sin — -
(iii) tan = 2 -4V 2 o @y [mcosa
2 cos& 1+cosa 2 1+cosa
2 o
10.6 Triple Angle Identities
(i) sin3a=3sina-4sin’ a (i) cos3a=4cos’ a@—3cos a

tana — tan’«a

1) tan 3o =
(i11) 1-3tan’ &

Proof: (1) sin3a =sin 2o+ a)
=sin 2¢ cos o + cos 2a sin a
=2 sin a cos a cos a + (1 — 2 sin® ) sin &
=2 sin a cos® o + sin a — 2 sin’ &
=2 sin a(1 — sin® @) + sin o — 2 sin’® &
=2sin o — 2 sin® o + sin a — 2 sin’® &
sin3a =3 sin -4 sin’ o
(i1)) cos3a =cos(a+ )
= 0s2a cos @ — sin 2¢ Sin &
= (2 cos’ a— 1) cos a— 2 sin ¢ cos a sin «
=2 cos’ a— cos o — 2 sin® a cos &
=2cos® a—cos a—2(1 — cos? a) cos a
=2cos’a—cosa—2cosa+2cos’ o
cos3a =4 cos’ a—3 cos &
(1i1) tan 3 =tan 2a + a)
tan® & + tana

" l-tan’a tana
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2tan
——— —+tana 3
l1-tan“ & _ 2tana +tana —tan” o
2tan  l—tanlg — 2
1— ” . tana I-tan” a —2tan"«
1-tan“

3tana — tan’a

tan® o =

1-3tan’
Example 11: Prove that: sind +sin 20 =tand
1+ cos@ +cos20
Solution: LIS, = 51n6?+2s1n6’<:20$0 _ sind(1 +2cosf)
1+ cos@+2cos"@—1 cos@(1+2cos)
_Sinf _n0=RHS.
cosd
L
Hence sing +sin20 =tand.
1+cos@ +cos20
2t 1—tan’
Example 12: Show that: (i) sin 20 = Lf (i) cos 29=&29
1+tan~ @ 1+tan~ @
25si 25si
Solution: (i) sin26 =2sin d cos 6 = sind cost = szlné’ C(,)Sf
1 cos” @ +sin“0
2sin@ cost ) siné
_ cos’d _ cosd
cos’@+sin’0  cos’@ sin’0
cos’ @ cos’8d cos’6
sin 20 = —Ztanzﬁ
1+tan~ @

cos’@—sin’ @  cos’ @ —sin’0

(i) cos260 =cos®* O—sin> O = =
1 cos” @ +sin"d

cos’@—sin’@ cos’d sin’6

_ cos’@  cos’d ~cos’0

cos’ @ +sin260  cos’ 6 N sin’ @

cos’ @ cos’@ cos’ @
1—tan*@
cos 20 = —
1+tan- @
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Example 13: Reduce cos* @ to an expression involving only function of multiples of
0, raised to the first power.
Solution: We know that:
1+ cos260
2

2c0s’0 = 1+cos260 = cos’l =

1+00526?_|2
2
_ 14+2c08 26 +cos’ ¥
4

cos* @ = (cos® ) = {

[142 cos 20+ cos® 20]

1+ cos46 |
|

[2+4c0s28 +1+cos4b ]

A= A=

{l +2co0s 20 +
1

4x2

0 | —

[3+4cos26 +cos40]

P~ EXERCISE 10.3 4

1. Find the values of sin 2«, cos 2« and tan 2¢, when:

. . 4 .. 12
(i) sina = 84 (i) cosa :—0, where 0<a <%
85 169 2
2. Prove the following identities:
. . in2
(i) cota—tana=2 cota (i1) S ana
1+ cos2a
- o
(i) —B% _an % (iv) SBETMY _ ee2a —tan 2
sina 2 cosa +sina
. a a
l+sing S, 08, .. cosecl +2cosec20 0
v) — = (vi) = cot—
l-sinx sect 2

.a
sin——CoS —
2 2

25in@ sin2
(vii) 1+ tan & tan 2@ = sec 2a (viiiy 230 Sin20 120 tand

cos@ + cos 30
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(ix) 511.130—00539 =2 (x) COS39+SH,13H =4cos26
sin@  cosO cos@  sind
tan o + cote—
(x1) 2 2 _gech (xii) sin30 + CO_S%) =2cot26
0 0 cosd sind
cot——tan —
2
(xiii) 3+c0s40 = l(‘[an2 % +cot2¢9) (xiv) 1+sin 20 s?n 20 =tan’ (Z +6 j
l1-cos40 2 1—sin 26 4

(xv) cos’ Z 1 cos> 3—7Z+ cos’ 7 +cos’ s =2
8 8 8 8

3. Show that: 2cos20=+2+~2+ 2c0s40
4

Reduce sin* @ to an expression involving only function of multiples of 8, raised
to the first power.
5. Find the values of sin 8 and cos @ without using table or calculator, when & is:

(1 18° (i) 36° (111) 54° (iv) 72°
1
Hence prove that: cos 36° cos 72° cos 108° cos 144° = 16
Hint: Let 6 =18° Let 6 =36°
560 =90° 560 =180°
(30+26) =90° 30+20 = 180°
360 =90°-26 360 =180° -26
sin 36 = sin(90° — 26) etc sin 36 =sin(180° — 20) etc.

10.7 Express the Product (of sines and cosines) as Sums or
Differences (of sines and cosines)

We know that:
sin (¢ + f) =sin a cos f + cos a sin ff (1)
sin(¢—f) =sinacos B —cos asinff (i1)
cos(a+ ) =cosacosf —sinasinf (1i1)
cos(ax—f) =cosacosf +sinasinf (1v)
Adding (i) and (i1) we get
sin(a + f) + sin(ax — f)=2 sin x cos (v)
Subtracting (ii) from (i) we get
sin(a + f) — sin(e¢ — f)=2 cos a sin (vi)

Adding (iii) and (iv) we get
cos(a+f)+cos (a—f)=2 cos acos S (vii)
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Subtracting (iv) from (iii), we get
cos(atpf)—cos(a—pf)=—2sinasin f (viii)
So, we get four identities as:
2 sin ¢ cos f = sin(a + f) +sin(a — f)
2 cos asin f = sin(a + f) — sin(a — f)
2cosacosff = cos(a + f) +cos(a— f)
—2sinasinf = cos(a + ) — cos(a — f)

Now putting @ + =P and a — = O, we get

P _
a= +o and S _P-0
2 2
sin P+sin Q = 25inP+Q cosP_Q
2 2
sin P—sin Q = 2cosP+Q sinP;Q
cosP+cosQ = 2cosP+Q cosP_Q
2 2
. P . P-
cos P—cosQ = —2sin ;Q sin 2Q

Example 14: Express 2 sin 76 cos 36 as a sum or difference.

Solution: 2 sin 76 cos 36 = sin(760+38) + sin(76 — 36)
=sin 100 + sin 460

Example 15: Prove without using table / calculator, that

sin 19° cos 11°+sin 71° sin 11° :%
Solution: L.H.S=sin 19° cos 11° + sin 71° sin 11°

:%[2 sin 19° cos11°+2 sin 71° sin 11°]
=%[{sin(l9°+11°)+sin(19°—11°)}—{cos(71°+11°)—cos(710_1lo)}]

= %[sin 30°+sin 8°—cos 82°+cos 60°]

1 l+sin8°—cos(90°—8°)+l
202 2
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= %{%+ sin 8° —sin 8°+ %} (. cos 82° =c0s(90° —8°) =sin 8°)

Iyt 1
= —| —+4—
2{2 2}

=R.H.S

1
2

) ) ) 1
Hence, sin19° cos 11°+sin71° sin11° :E

Example 16: Express sin 5x + sin 7x as a product.

Solution: sin 5x + sin 7x = 2sin Sx; Ix cos >x ; Ix = 2sin 6x cos(—x)

=2 sin 6x cos x (" cos(—60)=cos H)

Example 17: Express cos 8+ cos 36+ cos 50 + cos 76 as a product.
Solution:  cos @+ cos 368+ cos 58 + cos 76
=(cos 30+ cos 8) + (cos 70+ cos 50)
30+60  30-60 70+60 70 —-560
cos +2cos cos 5

= 2cos 2¢

=2 cos 26 cos G+ 2 cos 66 cosld
=2 cos O (cos 60+ cos 20)
60+20 60-20]
cos |
2]
=2 cosf (2 cos 40 cos20) =4 cos 8 cos 26 cos 46

= 2cosf [2 cos

Example 18: Show that cos 20° cos 40° cos 80° = é

Solution: L.H.S =cos 20° cos 40° cos 80°

- %(4 cos 20° cos 40° cos 80°)

[(2 cos 40° cos 20°) . 2 cos 80°]

[(cos 60° + cos 20°) . 2 cos 80°]

NN N

Kl +cos20° j 2.cos 80°|—|
2 i
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A= A= b= |-

DL rps
412 ) 8
Hence, cos 20° cos 40° cos 80° = l

8

<>

(cos 80° + 2 cos 80° cos 20°)

[cos 80° + cos(180° —

{cos 80° — cos 80° + é

Mathematics

(cos 80° + cos 100° + cos 60°)

80°) + cos 60°]

]

|J [ cos(180—0)=—cosf ]

P~ EXERCISE 104 4

1. Express the following products as sums or differences:

(1) 2sin36 cos ¥

(ii1) sin 56 cos 26

(v) cos(x +y)sin(x —y)
(vii) sin 12° sin 46°

(i)
(iv)
(vi)

2 cos 56 sin 36
2 sin 760 sin 26
cos(2x + 30°) cos(2x — 30°)

(viii) sin(x + 45°) sin(x — 45°)

2. Express the following sums or differences as products:

(i) sin 56+ sin 36
(i11) cos 66+ cos 36
(v) cos 12° + cos 48°

3. Prove the following identities:

(i)
(iv)
(vi)

sin 849 — sin 46
cos 70— cos 0
sin (x + 30°) + sin(x — 30°)

. sin3x—sin x .. sin8x+sin2x
(1) ——————=cot2x (i) ———=tan5x
COSX—COS3x cos8x+cos2x
... sinA-sinB A-B A+ B ) sin 80" + sin 40°
(i) ——=tan cot (iv) - - =
sin 4A+sin B 2 2 cos80" + cos 40
4.  Prove that:
(1) cos 15°+ cos 105° +cos 195° + cos 285° = 0
(ii) sin 26 +sin 46 +sin 60 +sin 89 an 50

c0s 20 + cos 40 + cos 60 + cos 80
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10.

(i) cos?| Z-% |cosy Z+Z |sina
4 2 4 2

(iv) sin Z_0 |sin|Z+0 :lcos20
4 4 2

sin@ + sin 36 + sin 58 + sin 70
(V) = tan 46
cos@ + cos 38 + cos 56+ cos 76

Prove that:

(i) cos 20° cos 40° cos 60° cos 80° = %

.. . T . 2T . . 4T 3
(1) sin— sin— sin— sin— = —
9 9 3 9 16
(i11) sin10"sin30° sin50° sin 70" = s
sin 36 . .o
Prove that: —————=sin@ ; deduce the value of sin 15
1+2cos26
Prove that: tan75° —tan15’ :2\/5
Prove that: cos15” —sinl5° =L
J2
.2 .2
Prove that; — >0 ¥~ 510 s = tan(a +/3)
sina cosa —sin ff cos B
Prove that:

sina+sinﬁ+sin7/—sin(a +ﬁ+y):4sin[a;ﬂ jSin(ﬁ;yjsin(y;a j



Trigonometric Functions
and their Graphs

INTRODUCTION

In this unit, students will explore key concepts essential for understanding the role of
trigonometry in mathematics and its real-life applications. We will begin by learning
how to determine the domain and range of trigonometric functions to understand their
behavior. Next, we will discuss even and odd functions, along with their periodicity,
which explains their repeating patterns.

Students will then learn how to graph and analyze sine, cosine, and tangent functions,
following this, we will focus on calculating the maximum and minimum values of
sinusoidal functions and examining their unique properties such as amplitude,
frequency, and phase shifts.

Finally, students will apply these trigonometric concepts to solve practical problems in
navigation, engineering, and physics, including calculating distances, optimizing solar
panel angles, and analyzing forces in structures. Mastering these concepts will enable
students to solve both theoretical and real-world problems using trigonometry.

Let us first find domains and ranges of trigonometric functions before drawing their
graphs.

11.1 Domains and Ranges of Sine and Cosine Functions

We have already defined trigonometric functions sin i

0, cos 0, tan @, csc @, sec @ and cot §. We know that

if P(x, y) is any point on unit circle with centre at the BQO. 1)
origin O such that mZXOP = @ is standard position, / yP *.7)
then 9

X'e ¢
. CE1,0 ol ¥ M J4(1,0
cosd =x and sinf =y ( )\J( )
= for any real number @ there is one and only one

. . D(0,-1)
value of each x and y i.e., of each cos @ and sin 6.

Hence sin & and cos @ are the functions of @ and their v Figure 11.1
domain is /K , the set of real numbers. r
Since P(x, y) is a point on the unit circle with centre at the origin O, therefore
-1 <x<1 and -1<y<1
= —-1<cosf <1 and -1 <sinf <1
Thus, the range of sine and cosine functions is [—1, 1].
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11.1.1 Domains and Ranges of Tangent and Cotangent Functions
From the Figure 11.1.

(1) tan9=§,x¢0

= terminal side a[”should not coincide with OY or OY (the Y-axis)

= 0 # (2n+1)%, where ne Z
Domain of tangent function=R — {x | x=(2nrn + 1) %, ne Z}

1 1
Ify=1,tan 0 = PR 0, P +oo therefore the range of tangent

function = R = set of real numbers.
(i1) From Figure 11.1
cot = = ,v#0
Y
terminal side OP should not coincide with OX or OX” (the X-axis)
0+ 0,+tr,t+27,...
0 # nm,wherene Z

UV

Domain of cotangent function=R — {x |x=nmz,ne Z}

1 1
Ifx=1,cot0= g as y — 0, g — + oo therefore range of cotangent

function = R = set of real numbers.
11.1.2 Domains and Ranges of Secant Function
From the Figure 11.1
sec 0 = l ,x#0
X
= terminal side 51; should not coincide with OY or OY” (the Y-axis)
V4
2

9 e

= Hiiz,iﬁs
2 2

= 0= (2n+1)%, where ne Z

Domain of secant function=R - {x|x=(2n + 1) %,ne 7}
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1 1
As 0<x<1 so, —>1,sec0>1 and -1<x<0 so, —<-1,secd<-1
X X

As sec @ attains all real values except those between —1 and 1
Range of secant function=R - {x| -1 <x<1}

11.1.3 Domains and Ranges of Cosecant Function
From the Figure 11.1

1
cscd=—, y#0
y
—
= terminal side OP should not coincide with OX or OX” (the X—axis)
= 0=+ 0,x71,+27x,...
= 0 # nm, wherene Z

Domain of cosecant function=R — {x |x=nn, ne Z}
As csc @ attains all values except those between —1 and 1
Range of cosecant function =R — {x|-1 <x<1}

The following table summarizes the domains and ranges of the trigonometric functions:

Function Domain Range
y=sinx (o0, 0)=R (-1, 1]
¥ =cos x (-0, ©)=R -1, 1]
y=tanx (-0, 0)=R

R = (o0, ), x # (2n+1)%,ne z

y=cotx R= (-0, ©),x#nn,ne Z (-0, 0)=R

y=secx (=0, —1] U [1, )

(o0, oo),xi(Zn-i—l)%,ne z

Yy = COSsec x (-0, 0),x#nn,ne Z (o0, —1] U [1, )

11.2 Even and Odd Functions
A function fis said to be even if f(—x) f(x), for every

number x in the domain of f. The graph of even function
, is always symmetric about
For example: f(» =x"is even function of x. Here y-axis

fE0)=(x)"=x = f(x)
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A function f is said to be odd if f(—x) =—f(x), for every number x in the domain of f .

For example: () =X’ is an odd function of x.

=(—x):t—x =—
Here f(-x)=(-x) X f(x) The graph of odd function is
The function f(@)#cos for all f€ R is an even always symmetric about the

function (see figure 9.2). origin.

Here f(—f)=cos(-0)=cos@= (6). ©, 1)

Thus, f(€)#cos isan even function. (%, ) = (cos 0, sin 0)
Similarly, the function f'(#) = sin @ for all (-1, 0) A I" (1,0)

€< R is an odd function. <8

Here f(—f)=sin(-0)=-sinf@=— (0). : x. ) = (cos 0, —sin 6)
Thus, f(@)#sin isan odd function. 0,-1)

W2 In both the cases, for each x in the
domain of f, —x must also be in the domain of 1.

11.3 Period of Trigonometric Functions
All the six trigonometric functions repeat their values for each increase or decrease of
2n in @ therefore, the values of trigonometric functions for 8 and 6 *+ 2nn, where
0 e R and n € Z, are the same. This behaviour of trigonometric functions is called
periodicity.
Period of a trigonometric function is the smallest +ve number which, when added to
the original circular measure of the angle, gives the same value of the function. A
function is periodic, if (6 +p) =/ (0), for all § in domain of function and the least
positive value of p is called the period of the function.
Now, let us discover the periods of the trigonometric functions.
Theorem 11.1: Sine is a periodic function and its period is 2.
Proof: Suppose p is the period of sine function such that
sin (0 + p)=sin @ forall Be R (A)
Now put 8= 0, we have
sin (0 + p)=sin 0
= sinp=0
= p=0,+m +2x, +3nx,...
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(1) If p=m, then from (A)
sin(@+m) = sin@ (not true) v sin(m+6#)=—sind
Thus 7 is not the period of sin &
(i1) If p =2n, then from (A)

sin (@+2n) =  sin 6, which is true . sin(6 + 2w) =sin O
As 2m is the smallest positive real number for which
sin(@+2n) = sin @

2m is the period of sin 6.
Theorem 11.2: Tangent is a periodic function and its period is 7.

Proof: Suppose p is the period of tangent function such that

tan(@+p)=tan @ forall € R (B)
Now put &= 0, we have
tan(0+p)=tan0 = tanp=0 By adopting the procedure used
p=0,m,2m,3m, ... in finding the periods of sine

and tangent, we can prove that

(1) If p =m, then from (B) tan(€ + m) = tan 6,
which is true
As 7 is the smallest positive number for which
tan (0 + ) =tan @
Therefore, 7 is the period of tan 6.

(i) 2m is the period of cos &
(i) 2m is the period of csc &
(iii) 2m is the period of sec &
(iv) = is the period of cot 6.

Example 1: Find the periods of: (1) sin2x (1) 3+ tang

Solution: (i) We know that the period of sine is 2n
sin (2x + 2m) = sin 2x = sin 2(x + ) = sin 2x
It means that the value of sin 2x repeats when x is increased by 7.
Hence 7 is the period of sin 2x.

(11) To find the period of 3 + tang , consider only tan g .
We know that the period of tangent is &t

1
tan | 247" tan— = tan —(x+3%) tan
3 3 3 3
It means that the value of tan g repeats when x is increased by 3m.

Hence the period of 3 + tan;—c is 3n. The addition of constant number 3 to the

tangent function does not affect the period.
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1. Determine whether the following functions are even, odd or neither odd nor even.

<>

Mathematics

(i) sin’x (i) sinx+cosx (iii) sin®* x+cos* x
. 1 .. sinx+sin3x
(iv) tanx+secx (v) 5 (vi) ——
cosec” x Cos x+cos3x
. 1 1
(vil)) ———— (viii) ————s—
secx+sec” x secx+cot” x
2.  Find the periods of the following functions:
(1) sinSx (i1) cos 7x (111) tan 3x (iv) cot 5

(v) 19sin (% XJ (vi) cosec (%j (vii) %sin (%—%j

(viii) —5—3sec (mx + %)
(x) 6—4cot(3+ Zj
4 4

11.4 Values of Trigonometric Functions

We know the values of trigonometric functions for angles of measure 0°, 30°, 45°, 60°,

(ix) 12+10tan(lxj
30

(xi) 9+30sec[i+ 2—”)
15 15

and 90°. We have also established the following identities:

sin (—@) =—sin 0

cos (—0) =cos 0

tan (—¢ ) =—tan 6

sin(z— @) =sin 6

cos(m— @) =—cos 0

tan (1 — @) =—tan 0

sin(z+ @) =—sin 6

cos(m+8) =—cos 0

tan (t + @) =tan @

sin(2z— 6) =—sin 6

cos(2n — @) =cos 0

tan (2t — 0) = —tan @

By using the above identities, we can easily find the values of trigonometric functions
of the angles of the following measures:
—30°,—45°,-60°,—90° +120°, + 135°, £ 150°, = 180°
+210°,£225°, £ 240°, £ 270° +300°, £ 315°, £ 330°, = 360°
11.4.1 Graphs of Trigonometric Functions
To plot the graph we shall follow these steps:

(1) Table of ordered pairs (x, y) is constructed, when x is the measure of the angle
and y is the value of the trigonometric function for the angle of measure x;

(i1)) The measures of the angles are taken along the X-axis;

(ii1)) The values of the trigonometric functions are taken along the Y-axis;
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(iv) The points corresponding to the ordered pairs are plotted on the graph paper,
(v) These points are joined with the help of smooth curves.

11.4.2 Graph of y = sin x from — 27 to 2n

We know that the period of sine function is 2n so, we will first draw the graph for the
interval from 0° to 360° (from O to 2m).

To graph the sine function, first, recall that —1 <sinx<1 forall xe R

We know the range of the sine function is [—1, 1], so the graph will be between
the horizontal lines y=+1 and y=-1

The table of the ordered pairs satisfying y = sin x is as follows:

o |z |z | 2|2 |7 | |IE A3 o 1y
6 3 2 3 6 6 3 2 3 6
* or or or or or or or or or or or or or

0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360°
Sinx| 0 0.5 | 0.87 1 0.87 | 0.5 0 |[-05|-0.87| -1 |-0.87|-0.5| O

To draw the graph:

1 side of small square on the x-axis=10°

(i)  Take a convenient scale 1 side of big square on the y-axis=1unit

(ii) Draw the coordinate axes.
(ii1) Plot the points corresponding to the ordered pairs in the table above
i.e., (0, 0), (30°,0.5), (60°, 0.87) and so on.

(iv) Join the points with the help of a smooth curve as shown. So, we get the graph of
y=sinx from 0 to 360° i.e., from 0 to 2.
As we see that the graphs of trigonometric functions are smooth curves and none of them is
line segment or has sharp corners or breaks within their domain. This behaviour of the curve is called

continuity. It means that the trigonometric functions are continuous, wherever they are defined.
Moreover, as the trigonometric functions are periodic so their curves repeat after fixed intervals.

90° 120° 150° 180\ 210° 240° 270° 300°

60°

Graph of y =sinx from 0° to 360°



. Trigonometric Functions and .
Unit @ their Graphs <0> Mathematics

In the similar way, we can draw the graph for the interval from 0° to —360°. This will
complete the graph of y = sin x from —360° to 360° (from —2x to 27), which is given
below:

&
<

Graph of y =sinx from — 360° to 360°

The graph in the interval [0, 27] is called a cycle. Since the period of sine function is
2m, so the sine graph can be extended on both sides of x-axis through every interval
of 2m.
Properties of graph of sine function ( y = sin x)
(i)  The domain is the set of real numbers (—oo < x < ).
(i1)) The range includes all real numbers from —1 to 1, inclusive, [-1, 1].
(iii) The graph of sine function is continuous for all real numbers.
(iv) The period of sine function is 2n. Mathematically, we can express it as
sin(é? + 27[) =siné.
(v) The sine function is an odd function. As the graph of sine function is symmetric
about the origin. Mathematically, it can be written as sin(—6)=—sind .

(vi) The maximum value of y =sinxis 1 when x= §+ 27n , where ne Z.

(vii) The minimum value of y =sinxis —1 when x = 37”+ 27n, where ne Z.

(viii) The x-intercept of the sine function occurs at x =z n, where ne Z.
(ix) The y-intercept of the sine function is 0.

(x) The amplitude of sine function is 1.

(xi) Inunit circle sin@ is equal to the y-coordinate of the given point.

11.4.3 Graph of y = cos x from — 21t to 27w

We know that the period of cosine function is 21t so, we will first draw the graph for
the interval from 0° to 360° (from O to 2m).

We know the range of the cosine function is [-1, 1], so the graph will be between the
horizontal lines y = +1 and y = -1
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The table of the ordered pairs satisfying y = cos x is as follows:

0 /4 V4 V4 2 S - I 4z RY/4 Sz | 11x m
x 6 3 2 3 6 6 3 2 3 6
or or or or or or or or or or or or or

0° 1 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° | 360°
cosx| 1 |087| 05 0 [-05|-087| -1 [-0.87|-0.5| O 05 (087 | 1

The graph of y = cos x from 0° to 360° is given below:

Graph of y = cos x from 0° to 360°

In the similar way, we can draw the graph for the interval from 0° to —360°. This will

complete the graph of y = cos x from —360° to 360° i.e. from —27 to 21, which is given
below:

A

T T T T
-360°-330°-300°-270%240°-210°-180° -150%120%-90° -60° -30°

T T T
30° 60° 90°\120° 150° 180° 210° 2409/270° 300° 330° 360°

Graph of y = cos x from — 360° to 360°

As in the case of sine graph, the cosine graph is also extended on both sides of x-axis

through an interval of 2.

Properties of graph of cosine function ( y = cos x)

(1) The domain is the set of real numbers (—oo < x < ).

(11) The range includes all real numbers from —1 to 1, inclusive, [-1, 1].

(iii))  The graph of cosine function is continuous for all real numbers.

(iv)  The period of cosine function is 27. Mathematically, we can express it as
cos(6+27)=cos.
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(v) The cosine function is an even function, as the graph of cosine function is

symmetric about the y-axis. Mathematically, it can be written as cos(—@) =cosd.

(vi) The maximum value of y =cosx is | when x=n, where n is an even integer.

(vii) The minimum value of y =cosx is —1 when x =7z n, where » is an odd integer.
. ) . T
(viii) The x-intercept of the cosine function occurs at x = 5 +7n, where ne 7.

(ix) The y-intercept of the cosine function is 1.
(x) The amplitude of cosine function is 1.
(xi) In unit circle cos@ is equal to the x-coordinate of the given point.

11.4.4 Graph of y =tan x from -7 to

We know that tan (—x) = — tan x and tan (1 — x) = — tan x, so the values of
tan x for x = 0°, 30°, 60°, 90° can help us in making the table.

Also, we know that tan x is undefined at x =+ 90°, when

(i) x approaches % from left x — (%j , tan x increases indefinitely in Quard L.
V4 Y
(i1)) xapproaches By fromrightie., x > [Ej , tan x increases indefinitely in Quard IV.

(i11)) x approaches —% from left i.e., x—)(—%] , tan x increases indefinitely in

Quard II.

+
(iv) x approaches —% from right 1.e., x—)(—%j , tan x increases indefinitely in

Quard III.

We know that the period of tangent is 7z, so we shall first draw the graph for the interval
from 0 to 7 (from 0° to 180°).

The table of ordered pairs satisfying y = tan x is given below:

T T V4 T 2z S
0 — - | —=0|—+0| — | — z
6 3 2 2

or or or or or or or or

0 30° 60° | 90°-0 | 90°+0 | 120° | 150° | 180°

tanx| O 0.58 1.73 +o0 -0 | -1.73 | -0.58 0
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Since the period of tan x is «, so we have the following graph of y = tan x from —360°

to 360°.

A

4 4

4

4

Properties of graph of tangent function ( y = tan x)

T T T | T T T )
-360” -3307-300° -270° -240° -219"-180° -150° -120° 90°
' '

v v

0 T T 3 T T T T } T T
-60° -3 307 60° 90° 120° 15077180 210 240° 270 300” 33
' '

v

v

Graph of y =tan x from — 360° to 360°

(1) The domain is the set of real numbers except the values where function is

undefined domain of tan x = (—o0, ©), x# (2n+ 1)%, wherene Z

(i) The range includes all real numbers (—o0, ©)

(ii1)) The graph of tanx is not continuous for all real numbers. It breaks at x = (2n+ 1)%

,wWherene Z

(iv) The period of tan function is m. Mathematically, we can express it as
tan(6 + 7 ) = tan@

(v) The tan function is an odd function, as the graph of tan function is symmetric

about the origin. Mathematically, it can be written as tan(—é?) =—tand

(vi) The x-intercept of the tangent function occurs at x = n, where ne Z.

(vii) The y-intercept of the tangent function is 0

(viii) The amplitude of tangent function is undefined because it has no maximum or

minimum values.
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1. Draw the graph of each of the following function for the intervals mentioned

against each:

(1) y=-sin2x , xe [-2m, 2m] (i1)) y=2cos2x, xe [0, 2r]
(i) y=tan2x , xe [-m, m] (iv) y=tan % , xe [2m, 2n]
(v) y=sin %x , xe [0, 2x] (vi) y=cos %x , Xxe [-m, =]

2. On the same axes and to the same scale, draw the graphs of the following functions
for their complete period:

(i) y=sinxandy=sin2x (i) y=cosxandy = cos 2x

3. Solve graphically:

(i) sinx=cosx, xe [0, r] (i) sinx=x, xe [0, r]

11.5 Maximum and Minimum Values of Given Functions of

the Type
e a+bsinf . a+bcosd
e a+bsin(cd+d) . a+bcos(c0+d)

e The reciprocal of the above, where a, b, c and d are real numbers.
The trigonometric functions like sine and cosine are periodic function because the
values of these function repeat over regular intervals. These functions are fundamental
in mathematics because of the repetition of their values at definite cycles and are used
to model various real-life situations, such as radio waves, light wave, and alternating
current in electricity and are also known as a specific case of sinusoidal functions.

The functions of the form f( 0)=a + b sin 0, g(0)=a + b cos 0, £,(0) = a + b sin(cO + d)

and g,(0) = a+bcos(cO+d) are the most common types of sinusoidal functions.

Now consider the general form of sinusoidal function f,(¢)=a+bsin(c8+d)...(J)

here ‘a’ represent the vertical shift refers to the vertical translation of the graph of a
periodic function, achieved by shifting the entire graph upward or downward. This
shift, also known as the vertical displacement, moves the function's position along the
y-axis without altering its shape or period. Amplitude ‘b’ is the maximum height of a
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wave measured from its midline. The period of (i) is equal to 2—” Phase shift ‘d’
c

indicates the horizontal translation of the graph of a periodic function, determining how
far the wave is shifted left or right along the x-axis. A positive d shifts the graph to the
left, while a negative d shifts it to the right, altering the starting point of the wave
without changing its shape or period. £(8) =1+ 3 sin (26)

For Example consider the function
()= 1+3sin(29 ) . Here a = lis

vertical shift, amplitude =|b| = |3| =3 Amplitude

Period

. 2r .
and period= — = as shown in the  Vertical
. 2 shift
adjacent figure.

Now, finding the maximum and 4 % g 34—” ¥ 57? 32 %“ &
minimum values of the functions "
f(9)=a+bsin(a9 +d) and v)

g(@)=a+bcos(d +d) is not a difficult task. We know that the maximum absolute
values of sine and cosine are equal to 1, so the maximum value of the product bsind
is |b|

Thus the maximum value of f(8)is : M = a+|b

where M denotes the maximum value of the function.

, whenever sin@ =1 or cosf =1

The minimum value of a function is m = a—|b , whenever sind =—1 or cosd =—1

and m denotes the minimum value of the function.
The absolute value of b is called the Amplitude of f(6)= a+ bsinf . The value of the

amplitude can also be determined using the formula
Maximum value — Minimum value

2

Amplitude =

Example 2: Find the maximum and minimum values of the following functions:
(1) 2+3sinx (i) 5—-2cos3x  (iii) reciprocal of (ii)
Solution: (i) Let f(x)=2+3sinx
The maximum value of f(x) will occur when sinx=1 . Herea= 2 and b = 3,
Maximum value of the function: M=a +|b|=2+3 =15
The minimum value of the function will occur whensinx =—1 .
Minimum value of the function: m=a—|b|=2-3=-1

Thus, maximum value of the function is 5 and the minimum value is —1
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(i) Let f(x)=5-2cos3x

The maximum value of f(x) will occur when cos3x=1 .Herea=5and b=-2 ,

Maximum value of the function: M=a + |b|=5+]2|=5+2="7.

The minimum value of the function will occurs when cos 3x =— 1.

Minimum value of the function: m=a—|b|=5—-|-2|=5-2=3.

Thus, maximum value of the function is 7 and the minimum value is 3.
(i)  reciprocal of part (ii)

The reciprocal of 5—2cos3x is _
5—2cos3x
1
Let g(x)=————
&) 5—2cos3x

To find the maximum and minimum values of g(x), first we will find the maximum and

minimum values of 5—2cos3x, which are 7 and 3 respectively.
After finding the maximum and minimum values take their reciprocal. The reciprocal of the

maximum value is the minimum of g(x) and the reciprocal of the

minimum value is the maximum of g(x).

1 1
Maximum value of g(x)=—= 3 =0.33

=0.14

Minimum value of g(x)=

<N -

m
1
M
11.5.1 Applications
Ferris Wheel Problems

The first Ferris wheel was invented by George W. Ferris. He
built the first one for 1893 World’s Fair. A Ferris wheel is an
important example of periodic motion that can be described
using trigonometric  functions, specifically sinusoidal
functions. When we model the height of a rider on a Ferris
wheel over time, we can use these functions to capture the
periodic nature of the motion. The motion of Ferris wheel can
be modeled by f(f) =a + b sin(ct +d) or f(t)y=a+ bcos(ct+d)

Example 3: A Ferris wheel with a radius of 45 feet has its lowest point located 5 feet above
the ground. It completes one full revolution every 60 seconds in counter clock wise direction.
Model an equation that describes the height of a rider on the Ferris wheel as a function of
time . How high is the rider from the ground after 40 seconds?. Also graph the model equation.

Solution: Since it takes 60 seconds for the Ferris wheel to complete one full revolution
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(one cycle), which is the period of the Ferris wheel, that is period = 60

760 = = o =X

c 60 30

The amplitude b which is equal to the radius of a ferris wheel (in this case b = 45).
The vertical shift a is the height of the center of the Ferris wheel above the ground.
Since the lowest point is 5 feet above the ground, soa =5+ b =15 +45=50.
we can model the height of a rider using (sine or cosine), because it reflects the periodic
nature of the motion. We usually choose a cosine function if the rider starts at the
maximum height, or a sine function if the rider starts at the midpoint.
Since the rider starts at the lowest point and goes up, we can easily model the required
equation as a negative cosine function so,
h(t) =—-bcos(ct)+a, where ¢ is time and /4 is height.

Now substituting the above values we get the function 4(¢) = —45cos (%t j+ 50,

which is the required equation of Ferris wheel.
Next, we find the height of the rider at # = 40 seconds.

h() = —45 cos (ﬂz j+ 50
30
For t =40, we have
h(40)=—-45 COS(;[_O 40 j+ 50=72.5 feet

Thus, height of rider after 40 second is 72.5 feet.
The graph of the model equation is shown below.

Height of a rider after 40 seconds y il
100 h(f)=—45 cos (%zj +50

y =

>

5 10 15 20 25 30 35 40 45 50 55 60
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Example 4: The water level L in feet of a tidal river varies throughout the day. Suppose

the level of the tidal river can be modeled by the equation: L(¢) =8+ 4sin (%t ), where

t denotes the time in hours. The water level oscillates 4 feet above and below an average
level of 8 feet.

(a) Find the water level at = 3 hours?
(b) What is the minimum water level?

Solution: (a) Given equation of water level: L(z)=8+4 sin(%t j

To find the water level, substitute = 3 into the equation
L(3)= 8+4sin(%.3j: 8+4sin(7[—2j

L(3)=8+4(1)=12
Thus, water level at t=3 hours is 12 feet.

(b) Now, to find the minimum water level, we need to determine when the sine
function attains its minimum value. We know that the minimum value of

sin ¢t = — 1, substitute the sin (Et J: —linto the equation

L(t):8+4sin(%t): 8+4(_1):8_4:4

Thus, minimum water level of the tidal river is 4 feet.

Example 5: From a point 100 m above the surface of a lake, the angle of elevation of
a peak of a cliff is found to be 15° and the angle of depression of the image of the peak
1s 30°. Find the height of the peak.

Solution: Let 4 be the top of the peak AM and
MB be its image. Let P be the point of

observation and L be the point just below P (on
the surface of the lake).

From P, draw P_Q 1 AM .

A

15° 0

~ 100 m ~

Let m PQ =y metres and m AM = h metres.
mAQ =h—mOM =h—-mPL =h- 100 B
From the figure,

AQ _h=100 . .. BO_100+h

POy POy

tan 15° =
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By division, we get
tan15° /4 —-100
tan30° & +100

By Componendo and Dividendo, we have
tan 15°+tan 30°  h—100+A+100 2k  h
tan 15°—tan 30°  A—100—A—-100 —200 —100

_ tan 30°+tan 15° 0.5774+0.2679 | |
tan 30° —tan 15° 0.5774-0.2679 |

= h = 273.1179.
Hence height of the peak = 273 m. (approximately)

P~ EXERCISE 11.3 4

1.  Find the maximum and minimum values of the following functions:

00

x100={

(i) 3-sin3x (i) 3+sin2x (iii) %+ sin(5x +7)

(iv) é+cos[x —Zj (v) 1-3cos2x (vi) 1+2sin(x +Zj
2 4 6

(vil) — (vii)) ——————  (ix) !
10—2sin3x 7+3cos(—2x) 5-3cos(3x—1)

2. The temperature T in a certain city varies throughout the day according to the
. 13 . : . .
equation 7(¢) = ?sm(%t—% }LIS , Where ¢ is the time in hours, with # = 0

corresponding to midnight
(a) Find the maximum and minimum temperature during the day
(b) Find the temperature at £ = 9 hours (9:00 a.m.).

3. A man on the top of a 100 m high light-house is in line with two ships on the same
side of it, whose angles of depression from the man are 17° and 19° respectively.
Find the distance between the ships.

4. P and Q are two points in line with a tree. If the distance between P and Q be
30 m and the angles of elevation of the top of the tree at P and Q be 12° and 15°
respectively, find the height of the tree.

5. A giant Ferris wheel has a diameter of 60 feet. The lowest point of the wheel is located
6 feet above the ground. The wheel completes one full revolution every 80 seconds.
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(a) Model an equation that represent the height /(#) of a rider on the Ferris wheel
at any given time ¢.

(b) Find the maximum height of a rider.

(c) Find the height of the rider from the ground after 35 seconds.

6. A childis playing on a swing in a playground. The height /(¢) of the swing seat above the
ground (in meters) at time ¢ (in seconds) is modeled by the function:

h(t)=1.5 + 1.2 sin(3xz)
(a)  What is the maximum height reached by the swing seat?
(b)  What is the minimum height reached by the swing seat?

(c) How long does it take for the swing to complete one full back-and-forth motion
(period)?
(d) At what time(s) does the swing seat first reach a height of 2.12 meters?

7. A carnival ride consists of a vertical wheel with a diameter of 40 feet. The centre
of the wheel is 28 feet above the ground. The wheel rotates at a constant speed and
takes 120 seconds to make one complete revolution. Model an equation that
describes the height h(t) of a rider on the wheel as a function of time t. How high
is the rider from the ground after 90 seconds? At what times will the rider be
36 feet above the ground?

8. Suppose the temperature 7" in degrees Fahrenheit of Lahore city in a month of
December throughout the day can be modeled by the equation:

. T . . . .
T'=64+8 sm(—2 tj, where ¢ is the time in hours. The temperature oscillates

8 degrees above and below an average temperature of 64 degrees.
(a) Find the temperature at /=9 hours?

(b) At what time the temperature will be maximum?

(c) Calculate the maximum temperature.

9. Suppose the population of a coastal city follows a sinusoidal pattern due to
seasonal migration. The population of the city over the course of a year can be

modeled by the equation: P(z‘):70000+10000 cos(%t—%j, P@) is the

population at time ¢ (¢ is the time in months, with ¢t = 0 corresponding to
January 1%). where ¢ denoted the months in a year.

(a) Find the population of a city at t = 7 months

(b) Find the maximum population




Limit and Continuity

INTRODUCTION

In mathematics, the concepts of limits and continuity are foundational in understanding
the behavior of functions and sequences, especially when applied to real-world
scenarios. This chapter will introduce and explore how to demonstrate and find the
limit of a sequence and a function, understand continuous and discontinuous functions,
and apply these concepts in various contexts such as economics, finance, and natural
sciences.

This unit will provide you with the tools to understand and apply the fundamental
concepts of limits and continuity, both theoretically and practically. By the end, you
will be able to demonstrate the limit of a function, test for continuity and discontinuity,
and apply these ideas to a wide range of real-world problems across various fields,
including finance, economics, and science.

12.1 Limit of a Function

The concept of limit of a function is the basis on which the structure of calculus rests.
Before the definition of the limit of a function, it is necessary to have a clear
understanding of the following phrases.

12.1.1 Meaning of the Phrase “x approaches zero”

1
Suppose a sequence x, = — assumes a sequence of values as:
n
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7 57 a
We can see that x is becoming smaller and smaller as 7 increases and can be made as small
as we please by taking “n” sufficiently larger. We can see that the sequence x, = % is
becoming smaller and smaller as 7 increases and can be made as small as we please by
taking “n” sufficiently large. In other words, x, = n_12 becoming closer and closer to 0

as n becoming large. This unending decrease of x, is denoted by x, — 0 and read as “x;
approaches zero” or “x, tends to zero as n — 0. That is, the limit of the sequence x;, 1s 0.
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12.1.2 Meaning of the Phrase “x approaches infinity”

Suppose a sequence x,= 10" assumes values as 1, 10, 10%, 10°, ..., 10", ...

It is clear that the sequence x, is becoming larger and larger as » increases and can be
made as large as we please by taking n sufficiently large. This unending increase of the
sequence x, is symbolically written as “x, —o” and is read as “x, approaches infinity”
or “x, tends to infinity” as n —o

12.1.3 Meaning of the Phrase “x approaches a”

Symbolically it is written as "x — a" which
Point to remember:

means that x is sufficiently close to a but different The symbol x —» 0 is quite different

from the number a, from both the left and right

from x = 0.
sides of a that is x—a becomes smaller and  x — 0 means that x is very close to
smaller as we please but x—a =0. zero but not actually zero.

x = 0 means that x is actually zero.

12.1.4 Concept of Limit of a Function
(i) By Finding the Area of Circumscribing Regular Polygon

Consider a circle of unit radius which circumscribes a square (4-sided regular polygon)
as shown in Figure 1.

The side of square is 2 and its area is 2 square unit. It is clear that the area of
inscribed 4-sided polygon is less than the area of the circum-circle
7=3142(zr* =7(1)* =7 =3.142)

V2
Figure 1: 4-sided polygon Figure 2: 8-sided polygon Figure 3:16-sided polygon

Bisecting the arcs between the vertices of the square, we get an inscribed 8-sided

regular polygon as shown in Figure 2. Its area is 22 =2.828 square unit which is
closer to the area of circum-circle. A further similar bisection of the arcs gives an
inscribed 16-sided regular polygon as shown in Figure 3 with area 3.061 square unit
which is more closer to the area of circum-circle.

It follows that as “n”, the number of sides of the inscribed polygon increases, the area
of polygon increases and becoming neared to 3.142 which is the area of circle of unit
radius.
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We express this situation by saying that the limiting value of the area of the inscribed
polygon is the area of the circle as n approaches infinity, i.e.,
Area of inscribed polygon — Area of circle as n — o

Thus, area of circle of unit radius = 7 = 3.142 (approx.)
(i) Numerical Approach

Consider the function f'(x) = x>

The domain of f'(x) is the set of all real numbers.

Let us find the limit of £ (x) = x> as x approaches 2.

The table of values of f(x) for different values of x as x approaches 2 from left and right
is as follows:

From left of 2 >) < from right of 2
x 1 15 | 1.8 | 1.9 | 1.99 | 1.999|1.9999|2.0001|2.001| 2.01 | 2.1 2.2 25 |3
f(x)=x*|1]3.375|5.832|6.859 [7.8806|7.8806|7.9988 | 8.0012 [ 8.012|8.1206 | 9.261 | 10.648 | 15.625 |27

The table shows that, as x gets closer and closer to 2 (sufficiently close to 2), from both
sides, f(x) gets closer and closer to 8.
We say that 8 is the limit of f(x) when x approaches 2 and is written as:

f(x) > 8asx—2 or lir121x3=8

12.1.5 Limit of a Function

Let a function f(x) be defined in an open interval near the number “a” (need not be at
a). If, as x approaches “a” from both left and right side of “a” f(x) approaches a specific
number “L” then “L”, is called the limit of f{x) as x approaches a. Symbolically it is
written as:

lim f(x) =L read as “limit of f(x) as x — a, is L”

xX—a

It is neither desirable nor practicable to find the limit of a function by numerical
approach. We must be able to evaluate a limit in some mechanical way. The theorems
on limits will serve this purpose. Their proofs will be discussed in higher classes.

12.1.6 Theorems on Limits of Functions
Let fand g be two functions for which Lim f(x)= L and Lim g(x) =M, then
Theorem 1: (a) The limit of the sum of two functions is equal to the sum of their
limits.
Lim[ f(x)+ g(x)]=Lim f(x) + Limg(x)=L+M

For example, Lirrll (x+95)= Lir{lx +Lim5=1+5=6

X—>a
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(b) The limit of the difference of two functions is equal to the difference of their
limits.

Lim[ f(x)-g(x)]=Lim f(x) - Limg(x)=L-M

For example, le(x 5)=Limx-Lim5=3-5=-2

x—3 x—3
(¢) If kis any real number, then
Lim[kf (x)] =k Lim f(x)= kL

For example, Linzl (3x)= 3Lir2n (x)=3(2)=6

(d) The limit of the product of the functions is equal to the product of their limits.
Lim[ f(x) g(x)]=Lim f(x) - Lim g(x)=LM

For example, Lirrll 2x)(x+4) = Linll (2x)- Linll (x+4)=(2)5)=10

(e) The limit of the quotient of the functions is equal to the quotient of their limits

provided the limit of denominator is non-zero.

{f( x Lmf(x)
2 e Lim g

X —>a

]5[, provided g(x)# 0 in a neighborhood of

aand M #0

x+3 ] Lim g(x+3) 243 5

x—2

For example: Lim
x—=>2

[x+4—| LimfGx+4) 6.4 10

(f) Limit of [ f(x)]", where n is an integer
Lim[ f(x)]" =[Lim / ()] =

3
For example, Liral (2x-3)’ = (Lin} (2x— 3)) =(5)°=125
(g¢) (1) limx"=a",wherep>0and peR

(2) limc=c

We conclude from the theorems on limits that limits are evaluated by merely
substituting the number that x approaches into the function.
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12.2 Limits of Important Functions

If by substituting the number that x approaches into the function, we get (%j, then we

evaluate the limits as follows:

We simplify the given function by using algebraic technique of making factors if
possible and cancel the common factors. The method explained in the following
important limits.

n n

. xX"—a - . .
12.2.1 Lim=———=na™"' where n is a non-zero integer and a > 0
X—>a xX—a

Case 1:  Suppose 7 is a positive integer.
By substituting x = a, we get (% jform, so we make factors as follows:

X' —a"=(x—a)x" rax"+a’ X"+ L+ a")

n n
. X —a

Lim—— =L

x>a x—q x—>a xX—a

im (x—a)(x""'+ax" 7 +a’x"+ ..+ a"")

=Lim(x"" +ax" P +a’x" + ..+ a")
xX—>a
=ad""v+a ad"*+a> a7 +dd" "+ . +a"!

n—1 n—1 1

=d" '"+a" '"+a" '+a" ..+ a"  =na"

. o is a positive integer.
Case II:  Suppose 7 is a negative integer (Say n = —m) where m P g

n n —m —m I
b
xX—a xX—a xX—a xX—a
n n m m
. xX'—a ) -1 x"—a
Lim =Lim —
x—>a X—da x—=al X A X—da
_1 m—1
= T (ma™") (by Case—1)
__ma—m—l
n n
x _a -1
Lim =na" n=-m
X—>a x-a
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Jx+a-Ja _ 1
X 2a

12.2.2 LiTIBI where n is an integer and a > 0.

o 0 . ..
By substituting x = 0, we have (6 ) form, so rationalizing the numerator.

= Lim
Jx+a+-a

x%O x—>0 X

HO[x/%;l/_j I;Ln‘)l[x/EM/_j

1 1
= Lim =
L e iy e A
-1
Example 1:  Evaluate: (i) Lim x2 (1) Lim———
x—>1 x" —x x~>3,\/> \/7
2
Solution: (i) Lim x2 ! (gjform.
x>l x" —x 0
- (=T (x+1) x+1
Lim = Lim =
x>l x°—x x—1 XM x—=>1 x
Llrnx+1_1+1 2_2
x>l x

(ii) 'wf_z__L 3(*/;+\/_)(M) Lim(x +v3) =3+43=23
- (e

12.2.3 Limit at Infinity
We have studied the limits of the functions f(x), f(x) g(x) and % , when x — c(a
g(x

number)

Let us see what happens to the limit of the function f(x) if ¢ is + o or —oo (limits at
infinity) i.e., when x — +o and — — o0.

(a) Limitasx — +©

Let f(x) = l, when x # 0
X

This function has the property that the value of f(x) can be made as close as we please
to zero when the number x is sufficiently large.

We express this phenomenon by writing Liml =0

x—)oox
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(b) Limitasx — —x©

This type of limits are handled in the same way as limits as x — —+oo.

ie., Lim l =0, where x # 0

X —>—0 X
The following theorem is useful for evaluating limit at infinity.
Theorem: Let p be a positive rational number. If ¥’ is defined, then

. a . a .
Lim — =0 and Lim —- =0, where a is any real number.

X —>+0 x X—>-0 x

For example, Lim — 6 =0and Lim —

x — too x3 X —> +o ,

12.2.4 Limit of a Sequence

A sequence is a list of numbers arranged in a specific order, typically indexed by
natural numbers 1, 2, 3, ...
Let {an} be a sequence, where each term of the sequence is denoted by {a,} andnis a
positive integer representing the position in the sequence. The limit of a sequence {a,}
is the value that the terms of the sequence approach as n—oo.
We say that a sequence {a,} converges to a limit L if, for any arbitrarily small positive
number € (epsilon), there exists a positive integer N such that for all n > N the
difference between a, and L is smaller than €. Mathematically, this is written as:

Lim a, = LifVe>0m3iN € Nsuchthat|a - L|<e for alln > N

n—> —0
If such an L exists, the sequence is said to converge to L. If no such L exists, the
sequence is said to diverge.

Example 2: Consider the sequence %an = l} Asn — oo, 1 —0
n n

1 1
Solution: For any € > 0, we can choose N =—, forn> N,|a, —0]=—e€, so the
n n

. 1
sequence converges to 0. Thus, lim,_, —=0.
n

2n+3

Example 3: Find the limit of the sequence a, = 1
n+

Solution: We can simplify the sequence:

2+g
2n+3 n

a
" on+l [ 1]
1+—
n
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3 1 . . 2+0
Asn — o0, —— 0and —— 0, so we are left with: limag, = ——=2
n n n—»0 1+0
2n+3

n+l

Thus, lim, 2,

Divergent Sequences: A sequence is divergent if it does not approach a finite value.
Divergence can occur in the following ways:

« The sequence may increase or decrease without bound (e.g., an = n® diverges to infinity).
o The sequence may oscillate between different values and not settle near any one

value (e.g., an = (—1)" oscillates between -1 and 1, so it does not converge).
12.2.5 Methods for Evaluating the Limits at Infinity

In this case we first divide each term of both the numerator and the denominator by the
highest power of x that appears in the denominator and then use the theorems on limit.

4 2
Example 4:  Evaluate Lim 5x3 10x2 *l
xo+e —3x” +10x°+ 50

Solution: Dividing numerator and denominator by x°, we get

s 10,1
5x =106 +1 . YT TS 0—0+0 o
m 3 3 = = =—00 v lim—=0
o =300 41007 +50 <o 5 1050 —3+0+0 x> XV
34—+
X X
4x* - 5x°

Example 5:  Evaluate Lim ——————
x> 3" 4+ 2x7+1

Solution: Dividing numerator and denominator by x°, we get

4 5
. 4x* - 5x° . ¥ x*
Lim )56—5);: Li x 22 000
xoo0 =3x7 +2x" +1 x o 3 2 1 -3+0+0
St St
X x
. 2-3x . 2-3x
Example 6:  Evaluate: (i) Lim ——— (1) Lim —
T (34 4x? *ove 34 457
Solution: (i) Here Vx’ =]x|=—xasx<0
Dividing up and down by —x, we get
2
-—43
Lim =2 _ [jm & 0+ _3

2
X

R —— 2 X—> —© :0 4_2
\3+4x \/3 4 +
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(i1)) Here \/x_2=|x|=x asx>0

Dividing up and down by x, we get

_ —-3 3 _
Lim —2=2% 3’“2 = Lim —% —8+i— 23
\3+4x %+4
X

n— +oo

12.2.6 Lim (1+ lj —e
n

By the binomial theorem, we have

(lijl(iju(ljum
n n 2! n 3! n
:1+1+l(1—lj+l(l—lj(l—%j+
2! n) 3! n n

When n — + o, l, z, E, ... all tends to zero, therefore
nn n
Xt n 20 31 41

=1+1+0.5+0.166667 + 0.0416667 + ... =2.718281 ....
As approximate value of e is 2.718281.

: 1Y
Lim|1+— | =e NI We can also show that
n—+ow n
1 q
. - L 1 = =
Deduction: L1rr01(1+x)x =e nf_r:o( i @ j ¢
x>
: 1Y :
We know that Lim| 1+— | =e (1)
n —> 0 n
. . 1
Put n=— 1in (1) then x=—
X n

! 1
When x — 0,n— © so, Lim[l+lj=Lim(l+x)x

n—+wo n x—>0

1 7
e=Lim(1+x)« Lim(1+l) =e

x—>0 n— +oo n

Hence Lim(1+ x)é =e

x—0
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1227 Lim“—L-1og a
x—0 X
Put a'-1 =y (1)
then a=1+y
So, x =log (1 +y)
From (i) whenx — 0,y — 0
LimZ _1:Lim 4 = im;
x>0  x y—)Ologa(1+y) y—=0 llog (1—|—y)
y
1 1 ;
=Lim —= =log! (- Lim(l+y)" =e)
y—>0 — loga e y—0
log,(1+y)”
. . (e -1
Deduction: Lll’l(’)l[ Jz log,e=1
x> X
. -1 )
We know that Lln(”)l[ a j: log, a (1)
X —> X

x—>0 X

(e -1
Put a = e in (i) we knolem(e J=log§ ~1

Important Result to Remember

. . . . (1
(i) Lime' = (il) Lime" = L1rn(—x j: 0
X >0 X —>—00 X —00 e
Example 7: Express each limit in terms of e.
2n 1
(i) Lim [1 + 3 j (i1) Lil’IOl(l +2n)n
n—>+o0 n PN

Solution: (i) Observe the resemblance of the limit with Lim(l + 1 j =e

n—>0 n
— ﬁ_|6

i l

2n m —|6
Lim(1+§j = Lim (1+l — ¢° where, m =2
n—>+0w n m —+oo m J 3
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(i1)) Observe the resemblance of the limit with
1

I;ijgl(l+ 2n)n =e
2

n—0 n—0

1 1
Lim(1+2n) :Lim[(nzn)znﬂ
put m=2n, when n >0, m — 0

[(1+m)m T =¢

12.2.8 The Sandwich Theorem
Let f, g and & be functions such that f(x) < g(x) < A(x) for all numbers x in some open

(1]

interval containing “c”, except possibly at c itself.
If Lim f(x)=L and Limh(x)= L, then Limg(x)=L

Lim(1+2n)ll7 =lim

n—0 m—0

Many limit problems arise that cannot be directly evaluated by algebraic techniques.
They require geometric arguments, so we evaluate an important theorem.
sin 0
=1.

12.2.9 If 0 is measured in radian, then l(fL"ol

Proof: To evaluate this limit, we apply a new technique. Take 6 be positive acute
central angle of a circle with radius » = 1. As shown in the figure, OA4B represents a
sector of a circle. Join 4 and B and extend OB to D such that O4 L AD. Also draw
BC1 OC on OA.

Given |OA|=|OB|=1 (radii of unit circle)

In the right AOCB, sin 0= 21 2 e |
|OB |
In the right AOAD, tan6 = [4D] =|AD| D
|OA4 |

) 1 1 . 1. B
(i) Areaof AOAB= 5 |OA|| BC| = 5(1)(s1n 0)= Esm 0

. 1 ,, 1 1 2
(i) Area of sector OAB = Er 0= 5(1)(9) = 56 and {
(iii) Area of AOAD = 1 |OA|| AD | = 1 ()(tan 0) = 1 tan 0 0

2 2 2 0 T A
-

From the figure we see that
Area of AOAB < Area of sector O4AB < Area of AOAD

= lsin6<9<ltan6
2 2 2
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As sin 0 is positive, so on division by 2 sin 0, we get

1<.i< ! (O<6<z)
sin® cos© 2

Slne>cose or cos6<—snele<l

e, 1>

When 6 — 0, cos 0 — 1
Since %is sandwiched between 1 and a quantity

The same result holds

approaching 1 itself. So, l?y the sandwich theorem, it must also S
sin @ ) 2

approach 1 that is, 3411’51

sin70

Example 8:  Evaluate ngnol

Solution: Let x =760, so that 0 = %

When 0 — 0 we havex — 0

. sin760 . sin x . sinx
Lim =Lim =7 Lim
00 0 x>0 X x>0

7

Example 9: Evaluate %ln(’)l 1= ceos J

=M =7

X

l—cose_l—cose' l+cos O 1—cos®0
0 0 I+cos 6 0O(1+cos 0)

sin® 0 . (sin@j 1
=———=sin 0
0(1+cos 0) 0 I+cos 6

Lim(l_COS 0 )= Lim sin 0 - Limw- Lim( ! j:(O)(l)(ﬁj:O
+

Solution:

00 0 00 050 0 0-0{ 14+cos 0

P~ EXERCISE 12.1

1. Find the limit of the following sequences if exists:

. 2n+3 . 2n+3 ... 5n . n*=3n+1
1) a,= 1) b = i) ¢ =—— (iv)d =————
0 a, n+1 @) b, n’+1 (i) <, 2n+3 (V) d, 2n* +n+4
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2. Evaluate each limit by using theorems of limits:

Mathematics

(1) Lin31(2x +4) (i) Lirr11(3x2 -2x+4) (iii) Lir131 X+ x+4
3
(v) Limyx'+4 () LimWx+1-v¥+5 (i) Lim 2;,C—+§x
X —> X —> X == X —
3. Evaluate each limit by using algebraic techniques:
. = Lo (3x0 4 4x) . o8 )
(1) Lim r (i1) Lim 3)62#( (i11))  Lim zx 8
x>l x+1 WOl X +x o2\ X"+ x—6
. . x =3x7+3x-1 . (X +x oL [2x7-32
(v) Lim=—5— ) %ifﬂ( e v Lim 57
iy 1 -2 s . NX+h— ) "—a"
(vii) L1mu (viii) lex—\/; (ix) Lim r—d
x—>2 x_2 h—0 h x—>a xm_am
4.  Evaluate the following limits:
: . sl . inx’ ... . 1l—cosB
(1) Lim Sin S x (1) Lim S X (111) Lim _COS
x—0 X x>0 X 0->0 gIn 9
(iv) Lim>2Y (v) Lim>224X (vi) Lim—>
oM T —X x=>0sinbx *=0 tan x
R I . in’
(vii) L1mw (viii) leﬂ (ix) Lim sin” 0
x—0 X 6—-0 l_cosqe 06—->0 e
2 3 _ 1 1
® Lim="2*** () Lim® ! (xii) Lim _
x—>-o x* +3x—4 x—>1 x°—1 >0\ g1+ ¢
5. Express each limit in terms of e.
2n 2 n
. . . . 1y
(1) Lim (1 + 1 j (i) Lim (1 + —J (111) Lim (1 ——
n —+o0 n n— +o n n— +w n
n n 2
(iv) Lim [1 + € j (v) Lim (1 + 4 j (vi) Lim(1+3x)~
n— 40 371 n—>+0 n -0
1 1 X
(vii) Lim(1+2x%)* (viii) Lim(1—2h)" (ix) le[i j
x—0 h—0 x>0\ 14+ x
1 1
(x) Lirrolel—_l,x< 0 (xi) Lirrolel—_l,x>0
er -1 e* +1
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12.3 Continuity and Discontinuity of Functions
12.3.1 One-Sided Limits

In defining Lim f(x), we restricted x in an open interval containing c i.e., we studied
X—>c

the behaviour of f on both sides of ¢. However, in some cases it is necessary to
investigate one sided limits that is, the left hand limit and the right hand limit.
(i) The Left Hand Limit

Lim f(x) = Lis read as the limit of f(x) is equal to L as x approaches ¢ from the left

i.e., for all x sufficiently close to ¢, but less than ¢, the value of f(x) can be made as

close as we please to L.
The Right Hand Limit The rules for

Lim f(x) =M is read as the limit of f(x) is equal to M as x ~calculating the left hand
x>t and the right hand limits

approaches ¢ from the right i.e., for all x sufficiently close to  are the same as we studied
¢, but greater than ¢, the value of f(x) can be made as close ~to calculate limits in the
as we please to M. ~ preceding section.

12.3.2 Criterion for Existence of Limit of a Function
Lim f(x) = L if and only if Lim f(x) = Lim f(x) =L

Example 10: Determine whether Linzl f(x) and Lil}l f(x)exist, when
x> x—

2x+1 if 0<x <2
f(x)=47-x if 2<x<4
| x if 4<x<6
Solution: (1) Lim f(x)=LimQ2x+1)=4+1=5
x—>2" x—>2
Lim f(x)=Lim(7—x)=7-2=5
x—2F x—2"

Since Lim f(x)=Lim f(x)=5
x—2" x—2"

= Lirr21 f(x)exists and is equal to 5.
(ii) Lim f(x)=Lim(7—-x)=7-4=3
x—>4" x—>4"

Lim f(x) = Lim(x) =4
x— 4" x—4"

Since Lim f(x)# Lim f(x)
x—4 x—4

Therefore, Liral f(x) does not exist.
x>
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12.3.3 Continuity of a Function at a Point

(a) Continuous Function

A function f'is said to be continuous at a number “c” if and only if the following three
conditions are satisfied.

(i) f(c)is defined (if) Lim /(x)exists (iif) Lim £(x)= /(c)

(b) Discontinuous Function
If one or more of these three conditions fail to hold at “c”, then the function fis said to

be discontinuous at “c”.

xP-1

Example 11: Consider the function f(x)= , discuss the continuity of fat x = 1.

Solution: Here (1) is not defined.
= f(x) is discontinuous at 1.

Example 12:  For f(x)=3x"-5x+4,discuss continuity of fat x = 1.
Solution: Linl1f(x) = Lin}(3x2 —5x+4)=3-5+4=2and f(1)=3-5+4=2
= Lim f(x)= £()
Therefore, f(x)is continuous at x = 1

Example 13: Discuss the continuity of the functions f{x) and g(x) at x =3

2
Y9 if x3
(a)  f(x)={ x-3
6 if x=3

2

(b) g(x)={’;_39 if x#3

Solution: (a) f(3)=6

Now, Lim f(x)=Lim
x—3 x—3 x_3

L OIS
x—>3 M

= Lim(x+3)=3+3=6
As  Lim f(x)=6=f(3) (07

f(x) is continuous at x = 3. It is noted that there is no break
in the graph.
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x2=9

(b) g(x)= if x#3

As g(x) is not defined at x =3

= g(x) is discontinuous at x =3
It is noted that there is a break in the graph at x = 3 near

x=3 (0,3)
Example 14: Discuss continuity of /' (x) at x =3, when /
[x—-1 , if x<3

f(x):izxﬂ Cif 3<x

Solution: A sketch of the graph of fis shown in the figure (iii). We can see that there
is a break in the graph at a point when x = 3. y
Now f(3)=2(3)+1=7
= Condition (i) is satisfied.
Lir?f(x) = Lir?(x—l) =3-1=2

~
|

Lim f(x) = LimQ2x+1)=6+1=7
x—3" x—3*

Lim £(x) # Lim f(x)

x—>3 x—3*

i.e., condition (ii) is not satisfied.
Lin; f(x)does not exist. ol
X

Hence, f(x) is not continuous at x = 3 /

P~ EXERCISE 12.2 4

1. Determine the left hand limit and the right hand limit and then, find limit of the
following functions when x — c.

2_
() f(x)=2x+x-5c=1 () flo)=2 39,02—3
x_
(i) f(x)=|x=5], c=5
2. Discuss the continuity of f(x) at x = ¢
3x—1if x<1
2x+5 ifx<2 , ¢=2
1 f(x)= . (1) f(x)=44 if x=1, c=1
4x+1 if x>2 )
2x  if x>1
3x if  x<-2

3. Iff(x)=4 x*-~1 if —2<x<2 Discuss continuity at x =2 and x = -2
3 if  x=>2
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x+2 x<-1 .
4. If f(x)= find “c¢” so that Lirg f(x) exists.

c+2 x>-1

5. Find the values m and n, so that given function f'is continuous at x = 3

mx if x<3
mx if x<3
o fx)= noif x=3 (i) f(x)={ ,

x- if x2=3

—2x+9 if x>3
Ay
V2x+5 - x+7 3
, X#2
6. f(x)= x=2 2
k ,  x=2 .
147 d
Find value of k so that f'is continuous x=2. [ _4 -3 2 _1/0 /1 2 3 4
) ) 2x+3, x<1 B
7. Given the function f(x)= * * -2
—x+4, x>1 ;
Discuss the limit and continuity at x = 1. v

12.4 Application of Transcendental Functions to Limits and

Continuity on Real World Problems
Limit and continuity of transcendental functions are fundamental concept in calculus
with numerous real-world applications.
These concepts help us model analyze and solve problems in various fields such as
growth and decay, finance, economics, surveying and predicting long-term stock
prices.
Example 15: Growth and Decay (Radioactive Decay)
The radioactive decay of a substance is given by the function 4(¢) = Aoe’k’, where 4 1s

the initial amount of substance, & is the decay constant, and ¢ is the time in years. Find
the limit of the amount of substance as ¢t — .
Solution:

We need to compute the limit: Lim A(¢) = Lim 4,e
t—00 —0
Ast—m,e™ >0, so Lim4e ™ =4,x0=0
t—w

Thus, the amount of radioactive substance approaches 0 as time increases indefinitely.
Example 16: Finance (Compound Interest)

The value of an investment grows according to the formula for continuous
compounding A(f) = Pe’*, where P is the initial principal, 7 is the annual interest rate,
and ¢ is the time in years. What happens to the value of the investment as # — o0 ?
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Solution: We need to compute the limit: Lim A4(¢) = Lim Pe”

[—© t—0
Since e — was ¢t — oo for any positive r, the value of the investment grows without
bound:
Lim Pe" =

t—
Thus, the value of the investment increases indefinitely as time approaches infinity.
Example 17: Economics (Supply and Demand)
In economics, the demand function D(p) decreases as the price p increases. Suppose

the demand function is given by D(p) = —2°_  where p is the price in dollars. Find the
p+t

limit of the demand as the price becomes very large, i.e., Lim D(p).
po®

Solution: Lim D(p)=Lim 100
po>® P2 p +1
. . 100
As p — oo, the denominator becomes very large, so L1m—1 =0
P >0 p +

Thus, as the price becomes very large, the demand approaches 0.
Example 18: Astronomy (Apparent Brightness of Stars)
The apparent brightness B(d) of a star decreases as the distance from Earth increases

following the inverse square law B(d) = % , where L is the star's luminosity. Find the

limit of the brightness as d — o .

Solution: lim B(d) = lim Lz
d—x d—w d
As d — o« the denominator becomes very large, so:
lim 2 =0
d—o d

Thus, as the distance increases indefinitely, the apparent brightness of the star
approaches 0.

P~ EXERCISE 12.3 4

1. A substance decays exponentially following the formula A(¢) = Aope

017 where A,

1s the initial amount. Find the limit of A(7) as ¢ — co.

100,000

2. A town’s population is modeled by P([):1 90 05" What is the long-term
+%Ye

population as ¢ —» oo.
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3.

A company’s weekly sales (in thousands) follow the function S(z) = &(l)(t) . What
1+

1s the limit of S(¢) as # — o0 and what does it represent?
1000

Py
2

Signal strength S(d) at a distance d from a tower is modeled as S(d) =

(i) What is the signal at d = 10?

(i1)) What happens to signal strength as d — o0 ?

A stock price grows according to the function P(#)= 50¢%%%,
(1) Find the limit of P(¢) as ¢t — .

(i) Calculate the price after 10 years.

The factory’s cost function is given as:

10x+500  if x<100
Clx)=
12x+300  if x>100

Is the cost function continuous at x = 100?

Inflation is modeled by 1(7) = 1o e*%*, where Iy is the initial price index and t is
the number of years

(1) Find the inflation rate after 5 years if 1o =100.
(i1)) What is the expected price index after 10 years?
The cost to produce x units is:

5x+20 if x<10
* :{6x+10 it x>10

Is the cost function continuous at x = 10?



Differentiation

INTRODUCTION

The ancient Greeks knew the concepts of area, volume, centroids etc. which are related
to integral calculus. Later on, in the seventeenth century, Sir Isaac Newton, an English
mathematician (1642 — 1727) and Gottfried Whilhe G. W. Leibniz, a German
mathematician, (1646 — 1716) considered the problem of instantaneous rates of change.
They reached independently to the invention of differential calculus. After the
development of calculus, mathematics became a powerful tool for dealing with rates

of change and describing the physical universe.

13.1 Tangent to a Curve at a Point $

Let P(x, f(x)) and QO(x + ox, f(x + 6x)) be two
points on arc AB of graph of f defined by the O(x + 8x, flx + &x)
equation y = f{x) as shown in Figure 13.1.

»

B

Where 6x is the increment in the value of x (read

=

P(x, f(x))
as delta x) . x

(0] S M N
The line PQ is secant of the curve and slope of N
scent line passing through P(x, f(x)) and O(x + 0x,
foot dx))is: gy = RQ _SxH )=/ () (1)
PR ox

Where msec 1s slope of the scent line.

Figure 13.1

sec

»
»

Revolving the secant line PQ towards
P, some of its successive positions

PQ,, PQ,, PQ,, ... are shown in the

Figure 13.2. Points 2(=12,3,..}
are getting closer and closer to the 0

point P and PR, Le,dx.(i=1,2,3,..) Figure 13.2

are approaching zero.

In other words, as §x — 0,the point Q approaches P, and the secant line becomes to
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the tangent line. The revolving secant line becomes the tangent line P7 at P while dx
approaches zero, that is,

. f(x+x) - f(x)

ox—>0 6x

.2

where m,, denote the slope of tangent line. we see that m, is the limit of m_ as Q

approaches P along the curve y = f{x)

Example 1: Find the gradient and an equation of tangent line to the graph of

f(x) = x*-2 at the point P(—1, —1).

Solution: To find the gradient or slope of the tangent line at point (—1, —1), putx = —1
in equation (2)

m,, = Lim f (_1+8g)_f =D P
f 2 e
—1+6x) =2—((-1)"=-2
g Gl -2-(C)-2) EUNE
x—0 Sx \p 2
1-26v+8x* ~2—(1-2) IR \WS|
= Lim < 2|
8x 0 Sx 432\110/2 34
A
o 1=28x+0x* =241 . —28x+x SN
=Lim =Lim ———
3 —>0 ox & -0 ox -3
4
ox(—2+46 v'
= Lim u=Lim(—2+esx):—z :
x>0 6X x>0

Now to find the equation of tangent line we use the point slope form of equation of line
with slope = —2 and point (-1, —1)

y—(-1= —2( X— (—1)) = y+1=-2x-2

or y=—2x-3, which is the required equation of tangent line.

The graph of f and tangent line are shown in the adjacent Figure.

13.2 Derivative as the Limit of a Difference Quotient

Let f'be a real valued function continuous in the interval (x, x,) < D ’ (domain of /),

then difference quotient PACH A C) R @)

X, —X
represents the average rate of change in the value of fwith respect to the change x, — x
in the value of independent variable x.
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If x, approaches to x, then LimM
x> X 'xl —x

provided this limit exists, is called the instantaneous rate of change of f with respect to
x and is written as f'(x).

If X, =x+06x ie, x—x=35x, then the expression (i) can be expressed as

S (x+3x)— f(x) (ii)
ox
and Lim &+ =/ () (iii)
dx—0 ox

provided the limit exist, is defined to be the derivative of f (or differential coefficient
of /) with respect to x and is denoted by f"(x) (read as “f— prime of x”’). The domain of
f"' consists of all x for which the limit exists. If xe D ; and f'(x) exists, then f'is said to

be differentiable at x. The process of finding /' is called differentiation.

13.2.1 Derivative as the rate of change of velocity

The rate of change is a fundamental concept in describing the motion of an object
moving in a straight line. In physics, this is typically analyzed using position, velocity,
and acceleration, which are all related through derivatives (rates of change).

The position versus time graph provides a simple interpretation of the average velocity
over a given time interval.

Suppose a particle moves in a straight line and its position at time ¢ is given by the
function s(z). The average velocity over the interval from 7 to 1 denoted by v, is

defined as:

_s()=s(0)

t,—t

...... (i)

avg

Equation (i) also represent the slope of scent line passing through the points
(,s(r)) and (1,,5(,)). If the interval ¢ — is not small, this average velocity does not

accurately represent the rate of change at time ¢.

To illustrate this, consider a particle whose position at time ¢ (in seconds) is given by a

function s(7) = ¢* +¢ in meters. The average rate of change over various time intervals

starting at t = 3 seconds is shown in the table below:
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Interval t=3 secsto =15 secs t=13 secs to =4 secs t=3secstor=3.5 secs
63
Average| s(5)—s(3) 30-12 s(4)—s(3) 20-12 —=—12
. = =9 = =8 |s5(3.5)-sB) 4
velocity 5-3 ) 4-3 1 = =75
35-3 0.5
3y 4y 1ty
50 50 50
40 40 i
30 30 30
20 30-12=18) 20 20
] | . A== . 15.75-12=3.75
0 e x 0 Gresl 0 3.5-3=05 x
O 123456 | 9 12345%6 ]| 9 12345¢6

We observe that these values are not closely approximate the particle's velocity at
exactly 3 seconds. To obtain a better approximation of velocity at x = 3, we use smaller

intervals:

Interval Average velocity

2

t=3secstor=3.1 secs 1) +3'1}_12:O'71:7,1
3.1-3 0.1
2

t=3secstor=3.01 secs (E R = 0.0701 =7.01
3.01-3 0.01

=3 secs to £ = 3.001 secs {(3.001)" +3.001} - 12 _ 0.007001 ol
3.001-3 0.001

We see as the length of the time interval decreases, the average velocity becomes
instantaneous velocity at # = 3. Based on the trend, we estimate the instantaneous
velocity to be approximately 7 m/sec.

Thus, over a sufficiently small interval, the velocity changes negligibly. If # is very

close to 7, the average velocity over ¢ —¢ approximates the instantaneous velocity at 7.

As t approaches ¢, the average velocity is called the instantaneous velocity.

This is similar to approximating the slope of a tangent line by calculating the slope of
a secant line. Mathematically, the instantaneous velocity denoted by vins 1s given by
the following limit:

Ve = Lim —S(tlt) — ‘;(t) (Provide the limit exist)
Y —
1

For convenient, if t,=t+05t, then as t, >t =t — 0, thus above equation becomes:

. os(t+01)—s(t ..
_Lim U =@
8 —>0 81

v

inst
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In other words, the instantaneous velocity is the derivative of the position function s(¢)
with respect to time.
Example 2: A particle moves along a line such that its position after ¢ hours is given
by: s(f) =47+ 2t + 1(in miles)

(a) Find the average velocity over the interval [2, 5]

(b) Find the instantaneous velocity at =3
Solution: (a) give position function s(f) = 4¢* + 2¢ + 1, where 2<¢< 5

The average velocity is over the interval 2<7<5 is:

4(5) +2(5)+1-| 4(2)"+2(2)+1
Average VCIOCity:vavg:S(S;_;(z): (57 +2(5) :E (2) +2(2) }

= 1 13_ 21 = 9—30 = 30miles/hours

(b) Instantaneous velocity can be found using the formula

Instantaneous velocity = Limw

85— 0 ot

AB+3) +2(3+00)+1-[4(3)°+2(3) +1 |
=Lim

8t —0 62‘

. A9+ 63t+8t7)+6+25t+1-43
=Lim

8 —>0 ot

. 36+248t+48t* + 6+ 28t +1—-43
=Lim

85— 0 ot

. A3+265t+48t°—43 . 265+ 48t
=Lim =Lim——
8t —>0 61‘ &—>0 61‘

ot(26+ 4ot
=Lim(—)=Lim(26+46t)=26
5t —>0 St &> 0

Thus, instantaneous velocity at # = 3 is 26 miles/hour

13.3 Process of Finding Derivative f'(x) by Definition

13.3.1 Notation of Derivative

Several notations are used for derivatives. We have used the functional symbol f'(x),
for the derivative of fat x. For the function y = f(x).

y + 8y = flx + dx) ...(iv)




Unit @ Differentiation <4> Mathematics

Dividing both the sides of (iv) by ox, we get

oy _ Jx+8x)— f(x) (V)
ox ox
Taking limit of both the sides of (v) as dx — 0, we have
LimY = Lim /&) =/ () (Vi)
dx—>0 Sx ox—>0 8_x

Lims—y is denoted by & , S0 (Vi) is written as Y _ S (x)
dx =0 dx dx dx

The symbol & is used for the derivative of y with respect to x and here it is
dx
not a quotient of dy and dx. % is also denoted by y'.
X

Now we write, in a table the notations for derivative of y = f(x) used by different
mathematicians:

Name of mathematician Leibniz Newton Lagrange Euler
. . dy | .. .
Notation used for derivative e or e fT(x)ory" | f(x) Df(x)
X X

If we replace x + 6x by x and x by a, then the expression f(x + 6x) — f(x) becomes [
(x) — f (a) and the change 6x in the independent variable, in this case, is x — a.

So, the expression St 8;;) aAC) 1s written as PACI P AC)] (vi1)
X xX—a

Taking the limit of the expression (vii) when x — a, gives LimM = f'(a).

X —>a xXxX—a

Here f"(a)is called the derivative or gradient of f'at x = a.
13.3.2 Finding f"(x) by Definition of Derivative

Given a function f, then f '(x) if it exists, can be found by the following four steps:
Step I:  Find f{x + dx)
Step II:  Simplify f{x + 6x) — f(x)

Step 111: Divide f{x + 8x) — f{x) by x to get L+ 5;:) ~ /) and simplify it.
X

Step IV: Find Lim J(x+0x) = f(x)

5x—0 ox
The method of finding derivatives by this process is called differentiation by definition
or by ab-initio or from first principles.
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Example 3:  Find the derivative of the following functions by definition

(@) fix)=c (b) fix)=x*
Solution: (a) Forfix)=c
(1) fix+td)=c

(i) fix+ox)—fix)=c—c=0
(iif) S(x+8x) - f(x) _ 0 —0
ox Ox
(iv) Lim S(x+8x)— f(x)
ox

& —>0

= Lim(0) =0
Thus, '(x) = 0, that is, - (¢) = 0

dx
(b) Ax)=x

(i) fix+38)=(x+dx)>
(i) fix+38) —fx) = (x + 8x)* — x? = x% + 2xdx + (8x)* — x* =(2x+ dx) dx

(i) f(x+dx)— f(x) _ (2x+ 0x) Ox —2x+8x , (5x#0)
Ox ox
Lim L +89— f(x)
(1V) x =0 ox
ie, f'(x) =2x

= Lim(2x+ dx) = 2x
x—0

Example 4:  Find the derivative of \/x at x = a from first principles.

Solution: If f(x)= Jx , then
(i) f(x+x)=+x+0x and (i1) f(x+6x)—f(x)=\/x+6x—\/;
_ (Vx+8x — \/; )V x+0x + \/; ) (rationalizing the j

Jx+ox ++/x numerator
X+0x—x

B Jx+8x +/x
ox
i.e. ox)— = 1
e, f(x+dx)— f(x) Trioeads @
(111) Dividing both sides of (1) by dx, we have
f(x+8x)—f(x)= ox
Sx Sx(Nx+8x +/x)

1
- \/x+8x+\/;

, (3x# 0)
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(iv) Taking limit of both the sides as éx — 0, we have

. fx+x)-f(x) L. 1
T ‘sLE%(—mw;j

L (r>0) and  f(a)=——

e f(¥)= =
’ Jr+dx 24 2a
Alternate method:  Puttingx =ain f(x)=+/x, gives f(a) =va

So, S = f@=x—a

Using alternative form for the definition of a derivative, we have

)= f(a) _x—+a

x—a xX—a
_ (x—Na)fx++a)
(x=a)Wx++a)
xX—a 1

= = 2
o) Jxra T ?

Taking limit of both the sides of (2) as x — a, gives

(rationalizing the numerator)

. ()= f(a) Y 1 _ 1
A Ly SO AR P
ic. f(a) =—

2Ja

which is the gradient of fat x = a.

Example 5: If 5 = %, then find 4 at x =— 1 by ab-initio method.
X

dx
Solution: Here, y = %’ SO (1)
X
yrdy= (ii)
(x+09y)
Subtracting (i) from (ii), we get
1 1 _xz—(x+8x)2

Y= =
(x+0x)" x x"(x+dx)
_{x+(x+0x)f {x—(x+06x)}
- x* (x + 8x)°
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_ (2x+06x)(—0x)  —0x(2x+06x)

= (ii1)
x”(x+ x)? x*(x+ dx)’
Dividing both sides of (iii) by dx, we have
8y —ox(2x+dx) _ —(2x+dx) (5% 0)

ox x*(x+8x)*- x _xz(x+8x)2 ’

Taking limit as ox — 0, gives

Lim 8_y = Lim ——2(2x al sz
x—>0Qdxy x>0y (X+6)C)
= _2(2)? (Using quotient theorem of limits)
x°(x7)
ie., Q:—_Z and & = 2 =__2=2 The value of 2 at
e x° dx[,_, (=17 -1 dx
. . x =—1 is written as @

The gradient of fat x =—1 ism = 2. x|,

13.4 Derivation of x" wheren € Z
(a) We find the derivative of X" when # is positive integer.

(a) Let y=x". Then
y+0y = (x+ ox)"
and oy = (x+0dx)" —x"
Using the binomial theorem, we have

dy = {x” +ax" 8x+mx"’2(8x)2 + ... +(6x)”|} -x"

2
i, 6y=6x{nx”‘l+wx”_2- o+ ...+(5x)”_1|—| (i)
2 J
Dividing both sides of (i) by ox, gives

L L Gl BV I N NP VR (ii)
Ox 12

Note that each term on the right hand side of (i1) involves dx except the first term, so

taking the limit as X — O’ we get ﬂ :nxn_1

dx

Asy=x",so0 i(x"):n- x"
dx
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(b) Lety=x" where n is negative integer.
Let n =—m(m is a positive integer). Then

I | .
y=x =—0 (1)
X
1 .
and y+06y =— i
YTV e W
Subtracting (i) from (ii), gives
B 1 L xT=(x+0x)”
(x+ox)" x"  x"(x+dx)"
x" =[x" +mx" " Sx + m(lné_l)x’” () 4 .+ (0x)"]
- x"(x+0x)"

(expanding (x + dx)” by binomial theorem)

2

x" (x+0ox)"

(mxm_l +Mx’”‘2 Sx+ ... +(5x)" !
ox

y__ 1
ox  x"(x+ox)"
Taking limit when dx — 0, we get

and (mxmlJermz- Sx+ ...+ (dx)" !

12

d -1 - . .
ay =— mx" ' (all terms contaning 5x vanish)
x"-x
_ m—1 _-2m
o
(=m)-1
=—mx d
— (x") = nx""is called
=nx"" [ —m=n] dx
" power rule. Where n€ R
or 4O _
dx

So, we have proved that di(x”) =mx""', ifneZ
X

The above rule also holds if n € O— Z, 1.e. for rational powers.

2 2
For example, i(xg) _2 ¥3 = il
dx

3x3

The proof of i(ﬂ): nx"~' when ne Q — Z is left as an exercise.
dx
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13.5 Connection Between Derivatives and Continuity

Calculus is a powerful branch of mathematics that allows us to study change and
motion. Two of its foundational concepts of continuity and derivatives are deeply
connected. While each concept has its own definition and application, understanding
how they relate to each other is essential for solving real-world problems in
mathematics.

As discussed in previous units, a function is continuous at a point if its graph has no
breaks, jumps, or holes at that point. On the other hand, the derivative of a function at
a point measures the instantaneous rate of change or equivalently, the slope of the
tangent line at that point. However, this definition depends on the function being well-
behaved around the point. This leads to a well-known result:

If a function is differentiable at a point, it must also be continuous there. This means
that differentiability implies continuity, but the reverse is not necessarily true. For
example, consider the function f{x)=|x| , clearly this function is continuous at x = O(see
Figure 1.1). Now we check the differentiability of f{x)=[x|] atx=0.

Sx) = x|
S(©0) =|0] =0 and,

S(0+06x) =|0+ ox|=]dx], y
o f(0+8x)~ £(0) = |3x|-0
and SO+ -7(©0) _|dx] x

ox ox
Thus  f"(x)= Lim@ 0

ox—0 Sx
Because [dx| = dx when dx >0 -
and [0x] =—8x  whenodx <0, Figure 13.3

so, we consider one-sided limits
Lim @ = Lim 8—X:I and Lim @ = Lim o

&x—0" Ox -0 Ox x>0 Ox x—0" OX

=1

The right hand and left hand limits are not equal, therefore, the [ im M does not exist.
x—0 Sx

This implies that derivative of f at x = 0 does not exist, and thus, there is no tangent
line to the graph of f at this point (see Figure 13.3). however the derivative exists at all
other points of fi.e., it is 1 on the right side and —1 on the left side. A function can be
continuous at a point but not necessarily differentiable there.
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1. Find by definition, the derivatives w.r.t. ‘x” of the following functions defined as:
1
Jx

2.  Find b from first principles and find gradient of the curve at the given point:
dx

(i) Jx+2atx=6 (ii)

2
Find the derivative of x* at x = 8 from the first principle.

3.  Find the derivative of x> + 2x + 3 by definition.
4.  Find from first principle, the derivatives of the following expression w.r.t. their
respective independent variables:

i (3x-2)" (i) (2x+3) (i) (ax+b)

() 2x°+1 (i) 2—x (iif) (iv) x(x—3)

atx=a

xX+a

5. Find the gradient and equation of the tangent line to y = 3x’— 4x+1 at x=2.

For the function f{x) = 2x*+x, calculate the equation of the tangent line at x = —1.

7.  Find the coordinates of the point of tangency and the equation of the tangent line
for fix) =x>2x+1 atx = 1.

8.  Find the gradient of the curve f(x) = 3x> + 2x at x = 1.

Find the gradient and an equation of tangent line to the graph of f(x) = Jx at

N

x=9
10. The position of a car after ¢ hours is given by: s(f) = 2£—3# + ¢ (in kilometers)
(@) Find the average velocity over the interval [I, 4]

(b) Find the instantaneous velocity at ¢ = 2

11. A stone is thrown upwards and its height after ¢ seconds is given by:
s(f) = =167 + 32t + 10 (in feet), Find the instantaneous velocity at ¢ = 1

12. The outdoor temperature (in °C) over time is modeled by: 7(f) = — > + 12¢ + 10,
where 7 is the time in hours. Find the instantaneous rate of change at ¢ = 2.

13.6 Theorems on Differentiation

We have, so, far, proved the following tow formula:

1. i(c) =( 1.e., the derivative of a constant function is zero.

dx

2. L3 (x")=nx""" power formula (or rule) when » is any real number.
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Now we will prove other important formulas (or rules) which are used to determine
derivatives of different functions efficiently. Henceforth, in all subsequent discussion,
1, g, h etc, all denote functions differentiable at x, unless stated otherwise.

3. Derivative of y = cf(x)

Proof: Lety =c f(x), Then

(i) y+oy =cfixtox)and

(i) y+8y—y=cflxt dx)—cfix)

or oy = c[ flix+ ox) — f(x)] (Factoring out ¢)
(iif) Sy _ c[f(x‘F 8)C)—f(x)ﬂ
ox dx |

Taking limit when éx — 0

SIS 30 ()
Ox dx >0 Ox

A constant factor can be taken out from a limit sign.

Thus, ? = ¢f"(x), thatis [cf(x)]' =cf (x) or i[Cf(x)] = Ci[f(x)]
x dx dx

(iv) Lim v = Lim

& >0dy x>0

4 4
Example 6: Calculate d (3x%) = 31 (x3) (Using Formula 3)
dx dx
4 L
=3x —x® =4x3 (Using power rule)

4. Derivative of a sum or a difference of functions
If fand g are differentiable at x, then /' + g, f — g are also differentiable at x and

[£()+g(0)] = /() +g(x), that is,di[f(m 2=+ L g
I dx dx

Also [ f(x)-g(0)] = //(x)- g'(x), that is,dimx)—g(x)] = 1-L g
I dx dx

Proof:  Letg(x) =fx)+ g(x). Then
(i)  P(x+8x) =flxt 8x) +g(x + &x) and
(i) @(x +dx) —@(x) =flx +0x) + g(x + 5x) — [flx) + g(x)]
=[flx +0x) — flx) + [g(x + 0x) —g(x)]  (rearranging the terms)
(i) PEF) P () _ fx+30) - f(x)  glx+x)—g(x)
ox ox ox
Taking the limit when éx — 0
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(iv) Lim Px+0x)—¢(x) _ Lim[f(er ox)— f(x) : g(x+dx)—g(x)

o —>0 Sx 3 x—0 8x Sx |_

G- L g+ dx) —g(x)

§x~>0 6 6x~>0 Sx

(The limit of a sum is the sum of the limits)

¢'(x) =/(x) + g'(x), that is [f{x) + g(x)]"=/(x) + &' (x)
d 4o
or E[f () +g(x)]= o L/ )]+ o [g(x)]

The proof for the second part is similar.
W Sum or difference formula can be extended to find derivative of more than
two functions.

Example 7: Find the derivative of y= ix“ + 2x3 + lx2+ 2x+ SW.I.t. X.
4 3

Solution: y=§x4+zx3+lx2+2x+5
4 3 2

Differentiating with respect to x, we have

dy d|3 2 1 d(3 d(2 d(1 d d
—y=—|:—x4+—x +—x +2x+5—| —( x' )4— ( x’ j+—(—x2 )+—(2x)+—(5)
3 2 dx dx

J'dx

dx dx| 4 dx dx\ 2
(Using formula 4)
=§i(x4)+zi(x3) 1 d( )+2—(x)+0 (Using formula 3 and 1)
4 dx 3 dx 2 dx
= %(4)«4 N+ %(3)8‘) ts Qx> +23.x (By power formula)

=3x" +2x" +x+2
Example 8: Find the derivative of y = (x> + 5)(x> + 7) with respect to x.
Solution: y=(2+ 5> +7)=x>+5x> + 7x* + 35
Differentiating with respect to x, we get

%=di[x5 +5x +7x +35]
x dx

= —(x )+5 ( N+ T — (x2)+di(35) (Using formulas3 and 4)
X

=5x"! +5><3x3’1 +7x2x*7 "+ 0

=5x*+15x* +14x
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Example 9:  Find the derivative of y = (2+/x + 2)(x—/x)

Solution: y=(24/x +2)(x = /x)
=2(Vx +1)-x(Vx =) = 2Jx(x + D(/x -1)

R (1) = 207 —x7)

Differentiating with respect to x we have

dy _d 5
2x2 X
o dx[( )]
=2 ix%—ix% =2 3,)6%1—1)6%71
dx dx 2 2
—3x2—x_5—3\/_ 3x—1

N
5. Derivative of a Product (The Product Rule)
If fand g are differentiable at x, then fg is also differentiable at x and

[A0)g@)] = ()g() + £ (x) '), that is
dimx)g(x)] - F[f(x)]} () +f(x){i[g(x)]}
x dx dx

Proof:  Let #(¥)=f(x)g(x). Then

(1) d(x +3x) =f(x + dox) g(x + dx) and

(i) Plx +0x) — p(x) = f (x + 6x) g(x + 6x) — f(x) g(x)
Subtracting and adding f'(x) g(x + 6x) in step (i), gives

Px + 8x) — $(x) = f (x + 6x) gx + &x) — f (x) gx + &) + 1 (x) glx + 0x) —
Sx)gx)
=[x +0x) —f (X)) g(x + 0x) + £ (x) [ glx + 0x) — g(x)]

(iif) P(x+3x)—¢ (x) _ {f(x+ Sx)—f(x)}g(erSx)Jrf(x)[g(x+8x)—g(x)}
ox ox Ox

Taking limit when dx — 0




Unit @ Differentiation <5> Mathematics

(iv) Lim P(x +0x) —¢ (x)
ox

ox —>0

glr+x)-g(x)]
Ox U
f(x+ Sx) S ) -Lim g(x + ox) + L1m f(x) Lim gt on)— g(x)

Sx —>0 dx >0 dx =0 ox

{f(x+5x) Jx) g(x+0x)+ f(x)-

Sx —>0

(Using limit theorem)
Thus ¢f (x) = £(x) g(x) + £(x) £'(x) [ Lim g(x+ 86) = g(x) ﬂ

or —[f (x)- g(X)]——[f ()] g(x)+ f (x)[ g(x)l}

Example 10: Find derivative of y = (2/x + 2)(x —+/x) with respect to x.
Solution: ¥ = (2Vx +2)(x—+/x)
= 2(Jx +D(x—x)

Differentiating with respect to x, we get

dy
— 2—[(&+1)<x V) |
=2 (—(\/;+l)j(x—\/;)+(\/;+l)i(x—\/;)}
|\ dx dx

=2 (%x;_] +0](x—\/;)+(\/;+1) x (1—%x;_1 ﬂ

_Zﬁ%(x Jx)+ (Wx+1) (1—%]}

= x_\/;+ X+ 2x -1
_2{”\/; [1)[2\/§H

=%[x—\/§+2x—\/§+2\/§—1)]

3x-1

Np




Unit @ Differentiation <5> Mathematics

6. Derivative of a Quotient (The Quotient Rule)

If f'and g are differentiable at x and g(x) # 0, for any xe D(g) then i is differentiable
g

2t x and (f(X)j S 080~/ £ @
g(x) [g(x)]

[d

that is i{f(x)ﬂ _ Lax

dx| g(x) ] [g(x)]

[f(x)ﬂ g(x)—f(x)[zc[g(x)]ﬂ

Proof:  Let ¢(x)= M Then
g(x)

f(x+0x)
g(x+0x)

and

(1) d(x+dx)=

() grs 50y LEFB) S0 J(80) 20— /() g +5v)
gx+dx)  g(x) g(x) g(x +0x)
Subtracting and adding f{x) g(x) in the numerator of step (i), gives

S(x+0x) g(x) - f(x) g(x) — f(x) g(x+8x)+ f(x) g(x)

5 -
¢(x+8x) ¢ (x) 2(0) 200+ 60)
= ;[(f (x+8x)— f(x))g(x) = f(x)(g(x+8x)— g(x))]
g(x) g(x+ox)
s P +x)—@(x) 1 JEH) = f) . 8EH X~ 8(X)
(i) ox - g(x) g(x+6x)|: ox )=/ (x) ox

Taking limit when dx — 0

x—>0

(iv) Lim P(x+06x)—¢ (x)
ox

. S(x+8x)— f(x) B glx+dx—g(x)
- ;;%{ g(x) g(x+0ox) ( ox g~/ (x) ox ﬂ

Using limit theorems, we have

P = [ g f(x) g )] ( Lim g(x+8x) = g(x))
g . g(X) dx —0

(%)
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Thus (f(x) j _ S ) 80— /(x) g1%)
g(x) [g(x)T

] ( o j‘ e - 1| o)
dx\ g(x) ()]
Example 11: Differentiate % with respect to x.
Solution: Let ¢(x) = M Then
x +1
f(x)=2x"-3x*+5 and g(x)=x"+1

Now f(x)= di [2x° —3x% +5]=2(3x")—3(2x) + 0 = 6x” — 6x
X

and g'(x)zi[x2+l]=2x+0:2x
dx
Using the quotient formula ¢'(x) = S (g —f z(x) gx) , We obtain
[g(x)]
d[2x'=3x"+5 | (6" —6x)(x* +1)— (2x’ =3x* +5)(2x)
dx x*+1 |J (x> B
_ 6x"—6x7 +6x° —6x—(4x* —6x° +10x)
(x*+1)°
_ 6x" —6x° +6x° —6x—4x" + 6x° —10x)
(x*+1)°
B 2x* +6x* —16x
(x> +1)°

P~ EXERCISE 13.2 4

1. Differentiate w.r.t ‘x’.

() i (i) x> 42x_ 243 (iii) 2X=3
2 2x+1
vy UHOE=x) (I —1J Vi) (=53 -
N .
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2
(vii) (x +1) (viii) x +1 (ix) 2x—1
x° -3 x*+1
2
x [4=X (xi) YX A
a+x x2—=1

2. Find di if y= (\/;—’_ 1)(k2

dx

, (x#1)

Py

x‘—l

3. Differentiate (\/;4_1)(‘“ D with respect to x.

1
x2_)£7_

4. Ify:\/;—

1
—, show that 23(@4_)7 — g/;
\/; dx
5. Ify=x*+2x*+2, provcthatcj =4xy—1
X

13.7 Application of Differentiation

We will apply concepts of differentiation to real-world problems such as (profits on
diminishing returns, environmental factors, financial investments, population growth,
spread of diseases, movement of particles, time-speed in transportation, structural
stress, material required that is changes in construction).

Profits on Diminishing Returns

Example 12: A company's profit function is given by P(x) = 100x — 5x* ,where x is the
number of units produced. Determine the marginal profit when x = 8 units.

Solution: The marginal profit is the derivative of the profit function with respect to x.

P (x) =i(100x—5x2)= 100—10x
dx

Now, substitute x = 8: P'(8)=100-10(8) =20

So, the marginal profit when 8 units are produced is 20 (in the given currency).
Movement of Particles

Example 13: A particle moves along a line according to the position function s(f) = 4¢°
—3¢ + 2t, where s(f) is the position and ¢ is the time in seconds. Find the velocity and
acceleration at 7 = 2 seconds.

Solution: Velocity is the derivative of the position function:

w(t) =%(4t3 —32+26)=12¢" —6t+2
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Substitute ¢ = 2:
v(2)=12(2)° —6(2)+2=48—-12+2=38
So, the velocity at # =2 is 38 m/s.
Acceleration is the derivative of the velocity function:

a(t) = %(lzﬁ —6t+2)=24t-6

Substitute t =2
a(2)=24(2)-6=48-6=42
So, the acceleration at = 2 is 42 m/s>.
Material Required in Construction
Example 14: A cylindrical tank is being constructed. The cost C to build the tank
100000

depends on the radius 7 of the base, and is given by C(r) = 500077 + , where

the first term represents the cost T of the base and the second term represents the cost
of the walls. Find the radius that minimizes the construction cost.

Solution: First, find the derivative of C(r):

100000 100000

2
r r

Cc'(r)= i(5000;zr2 + } 1000077 —
dr
To minimize the cost, set C'(r) = 0:

100000

2
7

Multiply through by 72 to eliminate the fraction:
100007t7* = 100000

1000077 — =0

Solve for r:
5 100000 _ 10
100007 7«

113
r :(&j ~ 1.336
T

So, the radius that minimizes the cost is approximately 1.336 units.

Financial Investments

Example 15: A bank offers a compound interest rate on an investment, and the value
of the investment after ¢ years is given by V(f) = 5000(1+0.04t)?. Find the rate of change
of the investment value after 10 years.

Solution: The rate of change of the investment is the derivative of V(¢) with respect to z.

V'(t)= %(5000(1 +0.04¢)*) = 5000(2)(1 + 0.04£)(0.04)
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V'(t)=400(+ 0.04¢)
Substitute t = 10:
V'(10) = 400(1+ 0.04x 10) = 400(1+ 0.40) = 400x 1.4 = 560
So, the investment is growing at a rate of Rs.560 per year after 10 years.
Structural Stress
Example 16: The stress on a beam under a varying load is modeled by S(x) = 500x —
2x3, where S(x) is the stress in pascals (Pa) and x is the distance (in meters) from the
beam’s fixed end. Find the rate of change of stress at x = 5 meters.
Solution: The rate of change of stress is the derivative of S(x) with respect to r.

S'(x) - %(SOOx —2x%)=500- 65

Substitute x = 5:
S'(5) =500 6(5)> = 500 — 6x 25 = 500 — 150 = 350
So, the stress is increasing at a rate of 350 Pa per meter at x = 5 meters.

EXERCISE 13.3

1. A car’s position at time t is given by s(f) = 5£ — 3£ + ¢. Find the velocity by
differentiating the position function with respect to time.

2. Structural stress on a bridge is modeled by the function S(x) = 100 — 5x, where x
is the distance from the center of the bridge. Find the point where the stress is
maximum and calculate the rate of change of stress at that point.

3. A company's revenue function is given by R (x) = 1000x —10x>, where is the
number of units produced. The cost function is C(x) = 300x + 2000.

(a) Find the profit function P(x)
(b) Determine the marginal profit when x = 15
(¢) Find the number of units that maximizes profit

4.  An investment grows according to the function A4(f) = 10000(1 + 0.05¢)°, where

A(?) is the value of the investment and ¢ is the time in years.

(a) Find the rate of change of the investment after 8 years.

(b) What is the investment value after 8 years?

(¢) Determine the time at which the investment is growing the fastest.

5. The position of a particle moving along a line is given by s(f) = 5 — 12/ + 8,
where s5(7) 1s the position in meters and ¢ is the time in seconds.
(a) Determine the velocity of the particle at # = 4 seconds.
(b) Find the acceleration at = 4 seconds
(c) When is the particle at rest?
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6.

The position of a car traveling along a straight highway is given by

x(f) = 30t >— 4t, where x (¢) is the distance traveled in kilometers and ¢ is the time

in hours.

(a) Find the car's velocity at ¢ = 3 hours.

(b) Determine the car's acceleration at # = 3 hours

(c) After how many hours does the car reach its maximum velocity?

The stress on a beam under a varying load is given by S(x) = 400x — x°, where S(x)

is the stress in pascals (Pa) and x is the distance from the fixed end in meters.

(a) Calculate the rate of change of stress at 6 meters.

(b) Find the distance where the stress is maximized.

(c) Isthe stress increasing or decreasing at x = 6 meters?

The cost C(7) to construct a cylindrical tank depends on the radius of the base,
150000

and is given by C(r) = 8000xr? +

, Where the first term represents the cost

of the base and the second term represents the cost of the walls.
(a) Find the radius that minimizes the construction cost.

(b) Calculate the minimum cost.

(c) Determine the rate of change of the cost at » = 4 meters.



Vectors in Space

INTRODUCTION

In this unit, we will look into the rectangular coordinate system in three-dimensional
space and explore the fundamental mathematical operations involving vectors in space.
We will begin by understanding the dot product (or scalar product) and the cross product
(or vector product) of two vectors and learn about their geometric interpretation. Further,
we emphasize their practical applications. For example, we will see how these concepts
can be used to calculate the area of a triangle and the area of a parallelogram. Finally, we
will explore the extensive use of vectors in three-dimensional space, particularly in
physics, where they play an important role in determining forces, velocities, and other
essential physical quantities. For example, determining the work done by a constant force
when moving an object along a specified vector.

14.1 Vectors (Recall)

In previous classes, we learned about two fundamental quantities: scalars and vectors.
A scalar is a quantity that has only magnitude or size, such as mass, time, density,
temperature, length, volume, speed work etc. On the other hand, a vector is a quantity
that has both magnitude and direction for example displacement, velocity, acceleration,

weight, force, momentum, electric and magnetic fields, etc.
—>

Geometrically, a vector is represented as a directed line segment 4B with A as its initial
point and B as the terminal point.

In two-dimension (R?) a vector has components that can be represented by an ordered pair
[x, y] of real numbers. For the vector u = [x, y], x and y represent the components of u.

Addition of vectors: For any two vectors u = [x,, y,] and v = [x,, »,], we have
utv=_[x, ]+, =k tx,y +y]
Scalar Multiplication of a vector: For u =[x, y] and ae R, we have
au=a[x, y]=[ax, ay]

Equal Vectors: Two vectors u =[x, y,] and vy =[x,, ,]of R*are said to be equal




Unit @ Vectors in Space <60> Mathematics

if and only if they have the same components. That is,

B D
[xl, yl]:[xz, yz] if and only if x,=x, and y,=y,and
we write u =v YT ch
In other words, two vector u andy are said to be equal, if
they have same magnitude and same direction. 4 ¢

Parallel Vectors: Two vectors are parallel if and only if they are non-zero scalar
multiple of each other.

— 3 — —_— —
For example, vectors — 4B and 5 AB are parallel to AB—-BA. 73/ b %A—B'

Magnitude of a Vector
The magnitude (or norm or length) of a vector in 2D
represents the length of the vector from the origin to the VT

point represented by the vector. For any vector u = [x, y]

in R*, we define the magnitude, as the distance of the 7 x Y

point P(x, y)from the origin O.

Magnitude of oP = |5-5| =|u| = [x%+ 2

Now, we will learn some mathematical operations involving vectors in three-
dimensional space.

14.1.2 Rectangular Coordinate System in Space

In space a rectangular coordinate system is constructed
using three mutually orthogonal (perpendicular) axes,
which have origin as their common point of
intersection. When sketching figures, we follow the
convention that the positive x-axis points towards the
reader, the positive y-axis to the right and the positive

z-axis points upwards.

These axes are also labeled in accordance with the right-

hand rule. The fingers of the right hand, pointing in the direction
of the positive x-axis, curled images toward the positive y-axis,
and the thumb will point in the direction of the positive z-axis.

A point P in space has three coordinates, one along x-axis, %

the second along y-axis and the third along z-axis. If the S
Right hand rule
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P(a, b, c)
°

distances along x-axis, y-axis and z-axis respectively are a, b 2
and c, then the point P is written with a unique triple of real
numbers as P (a, b, c) (see figure).

14.1.3 Concept of a Vector in Space

The set R* = {(x, v, 2): x, y, z € R} is called 3-dimensional
space. An element (x, y, z) of R® represents a point P(x, y, z),
which is uniquely determined by its coordinates x, y and z.
Given a vector u in space, there gists a unique point P(x, y,
z) in space such that the vector OP is equal to u (see figure).
Now each element (x, y, z) € R® is associated with a unique
ordered triple (x, y, z), which represents the vector
u=0P=[x,y,z].

14.1.4 Fundamental Mathematical Operations for Vectors in Space
We define addition and scalar multiplication in R® by:
(i) Addition of vectors: For any two vectors u =[x, y, z] and v = [x', ', z'] we have
u+v :[x,y,z] +[x',y',z'] =[x+ X, y+y,z+ z']
(i) Scalar Multiplication of a vector: For u = [x, y, z] and a € R, we have
au = a[x, y, z] = [ax, ay, az]
The set of all ordered triples [x, y, z] of real numbers, together with the rules of addition
and scalar multiplication is called the set of vectors in R3. For the vector
u =[x, y,z], x, y and z are called the components of u. The definition of vectors in R>
states that vector addition and scalar multiplication are to be carried out also for vectors
in space just as for vectors in the plane. Similarly we define in R*:
(a) The negative of the vector u =[x, y, z] as —u = (-)u =[ —x,— y,— z]
(b) The difference of two vectors v=[x', ', z'] and w = [x", y", z"] as
v=w=y+(-w) =[x -,y =), 2 2]
(c) The zero vector as O= [0, 0, 0]
(d) Equality of two vectors: Tow vectors v = [x', )/, z'] and w = [x", y", z"] are
equal thatis v=w ifand only if x'=x",y'=y"and z' = z".
(e) Position Vector
For any point Ilic, ¥, z) in R®, a vector u = [x, y, z] is represented by a directed
line segment OP, whose initial point is at origin. Such vectors are called
position vectors in R>. .
If A(x1, y1, z1) and B(x", y", z" ) are two points then position vector AB is

/ U ! " ! s
AB=y=[x X",y -)" .7~z
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14.1.5 Magnitude of a Vector in Space
We define the magnitude, norm, or length of a vector u in
space by the distance of the point P(x, y, z) from the origin O.
0P| = [u] = \Jx* + 7 + 22
Example 1: For the vectors, u = [1, -2, 3], v=1[2, 1, 3] and
w=[-1, 4, 0], find the following:
i) vtw (i) 2w (iii) u]
(iv) |v—2w| (V) 2u-v+3w|
Solution: (i) yv+w=[2-1,1+4,3+0]=][1,5, 3]
(i) 2w=2[-1,4,0]=[-2,8,0]

(i) Ju|=[1,-2,3]| =1 + (=2 +3)* =1+ 4+9 =14
(iv) |v—=2w[=[[2+2,1-8,3-0]=]4,-7,3]
@+ 4B _J16+49+9 =74
v)  2u—v+3u=[2[1,-2,3]-[2.1,3]+ 3[-1,4,0] = [ 2,— 4,6]-[2.1,3] +[ -3,12,0]

=[-3,7,3] =31 + (7} +(3)* =9 +49+9 = 67

14.1.6 Components of a Vector z
As in plane, we introduce three special vectorsi=[1, 0, 0], 0.0, 1)

j=1[0,1,0]and k =[0,0,1]in R’
As magnitude of i = /1’ + 0° + 0° =1 N TR
. . 2 2 2 = -
magnitude of j = JOO+1°+0° =1and 4
magnitude of k£ = \/OZ +0°+1°=1.8S0, i, j

and k are called unit vectors along x-axis, y-axis and z-axis respectively. Using the

|
V<

definition of addition and scalar multiplication, the vector [x, y, z] can be written as:
u=[x, y, z] =[x, 0,0]+[0, y, 0]+ [0, 0, z]
=x[1, 0, 0] + »[0, 1, 0] + [0, O, 1]=x£+ yl'+ zk
Thus, each vector [x, y, z] in R? can be uniquely represented by xi + yj + zk.

Unit Vector
A unit vector is defined as a vector whose magnitude is unity. In three-dimensional

space the unit vector of the vector u = xi+ yj + zk is written as u (read as u hat) and

(1,0,0)
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is defined by

A u X . . z
Uu=—= i+ J Jj+ k
|E| \/)c2+y2 +z* \/x2 +yz+z2 - \/x2+y2 +z*

In terms of unit vector i, j, and k, the sum u + v of two vectors.

u=[x,y,z]and y=|x,,y,,z,]is written as:
2"“_’:[)51 X0 s 2 +Zz]
=05 +x,)i+( +y2)l+(21 +2,)k
Example 2: Find the unit vector of u =2i+5/-k.

Solution: Given vector u = 2i+ 5/ —k, to find the unit vector

= |=y@+67 + (17 =30
The unit vector is:

Aoy 2i+5) -k
= u=== = — =

1
W 30 _\/%<

Thus, LAt = L(2;’ +5/ - l_c) is the required unit vector.

V30

Example 3: If u=2i+3j+k, v=4i+6j+2k and w=-6i—-9j—3k, then show

2i+5j—k)

that u,v and ware parallel to each other.
Solution:  u=4i+6j+2k=2Q2i+3j+k)
v=ou )
= uand v are parallel vectors.
w=-6i—9;/-3k
=-3Q2i+3j+k) . w=-3u
= u and w are parallel vectors.

Hence u,vand w are parallel to each other.

14.1.7 Properties of Vectors
Let u, v and w be vectors in the plane or in space and let a, b € R, then they have the
following properties:

(1) utv=yv+tu (Commutative property)

(ii) w+v+tw=u+@+w) (Associative property)

(i) u+0=0 (Additive Identity)

iv) ut(EDu=u-u=0 (Inverse for vector addition)
(v) alv+w)=av+aw (Distributive property)

(vi)  a(bu) = (ab)u (Scalar multiplication)
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Proof: (i) Since for any two real numbers a, b € R, a + b = b + a, it follows that for

any two vectors u = [x, y, z] and v = [x', ', Z'] in R®, where components of u and v

belong to R.
We have uty =[xy z]t+[x,), 7]
=x+x,y+),z+7]
=[x"+x,y ty 2z +7] v a+b=b+a
=[x, 2T+ [x, p 2]
=vtu

So, addition of vectors in R’ is commutative.

(i) Since for any three real numbers a, b, c€ R, (a + b) + c=a + (b + ¢), it follows
that for any three vectors, u =[x, y, z], v= [x', ), ] and w = [x", y", 2] in R®.
Where components of #, v and w belong to R.

Wehave  (uty)+tw=[x+x,y+y,z+2]+[x" )" 2"]

=[x +x) X", (v +)) )", (2 +2) + 2]
=[x+ +x"),y+ 0 +)"), z+ (2 +2")]
“ (a+b)+c=a+(b+c)
=[xy z] X X7y )" 2+ 2]
=ut(@tw)
So, addition of vectors in R? is associative.
(111) Since for any real number a and 0
a+ 0= a, it follows that
for any vectors, u = [x, y, z], and 0 = [0, 0, 0], where 0 is the zero vector in R>.

We have u+ 0=|[x,y z]+[0,0,0]
=[x+0,y+0,z+0]
= yzl=u

ut0=u

Thus 0 is the additive identity in R?
(iv) Since for any real number a, there exist —a such that
at(—a)=a—a=0 it follows that
for any vector, u = [x, y, z], there exists —u = [-x, =y, —z] in R’

Suchthat  w+ (-u) =[x,y 2]+ [-%, v, 2] = [x + (=2), y + (9), 2 + (2)]
=x-xy-yz-7]
=0, 0, 0] = 0, where 0 is the additive identity

ut(-u)=0
Thus —u is the additive inverse of u in R®
The proofs of the other parts are left as an exercise for the students.
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14.1.8 Distance Between Two Points in Space

— > — > .
If OF and OP, are the position vectors of the Az
points B(x,,y,,z, ) and B(x,,,.2, ) Py 0.2
— \

The vector PP, is given by P\@ﬁ z

— — > — > / P\Pz/?'m

RPZZOPZ—OEZ[XZ—xl,yz—yl,zz—zl] ¥ 0

—

Distance between P, and P, = |Ple| 0 5

- \/(xz X )2 +(y2 -0 )2 +(Zz —Z )2

This is called distance formula between two points P, and P, in R’.

Example 4: Suppose a butterfly's flight path passed through points (2, 4, 7) and
(6, 1,3), where each unit represents a meter. What is the magnitude of the displacement
the butterfly experienced in traveling between these two points?

Solution: Distance between two points in three-dimensional space is given by the
formula

d=\(x, -5 ) +(r-2) +(z-2)

Substitute the coordinates of the given points into the formula:
d=\(6-2) +(1-4) +(3-7)
d =16+9+16 =+/41 = 6.40

The magnitude of the displacement the butterfly experienced in traveling between
these two points is approximately 6.40 metres.

14.1.9 Direction Angles and Direction Cosines of a Vector

—

Let r =OP = xi+ yj+ zk be a non-zero vector, let a, £ and y

denote the angles formed between r and the unit coordinate
vectors i, j and k respectively,

where 0<a <7, 0<B<r7mand 0<y<r

<V

(1) The angles a, f and y are called the direction

angles.

(i1) The numbers cos a, cos f and cos y are called direction cosines of the
vector r.
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Important Result
Prove that cos” ¢ + cos” B +cos” y =1
Proof: Let

P(x, y, z)

r=[x,y,z]=xi+yj+zk
_ 2 2 2
|r|=yx*+y*+22 =r 4
—
then = = {f,l,ET is the unit vector in the director of the vector » = OP
lr| Lr r 7!
It can be visualized that the triangle OAP is a right

triangle with m £4 =90°.
Therefore, in right triangle OAP,

ot B y

P

A x ..
cos @ = — = —, similarly
r

—

z
cosﬁ:Z, cosy =— 0 x A
r r
x y z o .
The numbers cosa ==,cosff ==and cosy =— are called the direction cosines
r r r
of OP
2 2 2 2 2 2 2
X z X"+ +z r
cosza+coszﬂ+cos27/=—2+y—2+—2=y—2=—2=1
r r r r r

P EXERCISE 14.1 4

. Letu=3i+2j—-5k, v=i—5j—kandw=—4i— j+7k. Find the following:

() u+2v+w (i) v-3w (i) [3v+w|
2. Find the magnitude of the vector v and write the direction cosines of v.
(i) v=3i-2j+6k (i) v=—4i+4)+2k (i) y=-6i+8;
3. Find 1, so that [2i+(t—1)j+k|=/13
4. Find a unit vector in the direction of y=—i+4;—8k
5. IWu=2i+j-3k,v=—i+4j+2k and w=3i—2j+k, Find a unit vector parallel
to 4u—3v+2w.
6. Find a vector whose
(i) magnitude is 5 and is parallel to 3i+4, -

k
(ii) magnitude is 7 and is parallel to —i+ j +k.
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7. If u=xi+2j+3k, v=i+yj—3k and w=-2i—3) represent the sides of a
triangle. Find the value of x and y.

8. The position vectors of the points 4, B, Cand Dare u=i+2j+ k, v=Ti+ 8+ 4k,
w=—i+k and z=i+2j+2k respectively. Show thatﬁ is parallel to Fé

9. We say that two vectors v and w in space are parallel if there is a scalar ¢ such
that v = cw.The vectors point in the same direction if ¢ >0 and the vectors point
in the opposite direction if ¢ <0

(a) Find two vectors of length 2 parallel to the vector v = 2i -4 + 4k.

(b) Find the constant a so that the vectors y=i—3j+4k and w=ai+9/-12k
are parallel.

(c) Find a vector of length 5 in the direction opposite that of v =i—2; + 3k.
(d) Find a and b so that the vectors 3i— j+4k and ai+bj— 2k are parallel.

10. A spacecraft moves from point (120, 240, —50) to point (130,210, 80) in
kilometers. What is the magnitude of the displacement vector in kilometers?

11. Find the direction cosines for the given vector:

(i) u=-6i+3j+2k (i) v=4i+2j-5k

(ii1)) PO, where P(9,3,13) and O(11,6,19).
12. Which of the following triple can be the direction angles of a single vector:

(1) 45°,45°,60° (i) 30°,45°, 60° (111) 45°, 60°, 60°
Product of Two Vectors: Multiplication of two vectors is an important algebraic
operation in vector algebra. This algebraic operation plays a fundamental role for
understanding various physical and mathematical real-life situation. Unlike the
multiplication of numbers, product of vector can be performed in two distinct ways.

The two primary types of vector multiplication are the dot product and the cross
product. The dot product is a scalar number while cross product is a vector quantity.

14.2 Dot or Scalar Product

14.2.1 Dot or Scalar Product of Two Vectors and Its Geometrical Interpretation
We shall now consider products of two vectors that originated in the study of physics
and engineering. The concept of angle between two vectors is expressed in terms of a
scalar product of two vectors.
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Definition 1: Let two non-zero vectors u and v, in the plane or in space, have some
initial point. The dot product of u and v, written as u- v, is defined by

u-v=[ullylcosb

D
[ Xen)

v

I<

Where 6 in the angle between u and vand 0 <0 <mn
Definition 2:

(@ If u=ai+bj and v=a,i+b,jare two non-zero vectors in the plane. The dot
product u- v is defined by:
u-v=aa,+bb,
(b) Ifu=ai+bj+c¢k and y=a,i+b,j+c,kare two non-zero vectors in space.
The dot product u- v is defined by
u-v=aa,+bb,+cpc,
The dot product is also referred as the scalar product or the inner product.

Example 5: Prove that equivalence of following two definitions of dot product of two
vectors:

(1) Ify =[x, y]and w=[x,, y,] are two vectors in the plane, then v w =xx, + y, »,
(i1)) Ifyand w are two non-zero vectors in the plane, then v- w =| v | |w| cos 6, where
6 is the angle between vand w and 0 <6 <.

Proof:  Letyandw be the sides of a triangle then the
third side opposite to the angle 6, has length |[v — w|

By law of cosines,
lv—w =[v P+ wf-2|v|[w cos (1)

if v =[x, y,]and w = [x,, y,], then

I<

—-w :[xl_xzayl_yz]

So, equation (1) becomes:
X =%, P+ 3 =p, P =127 + 7 [+ + 23 [ =2]v| | w] cos O
—2xx, = 2y,y,==2|v[|w| cos 6

= xnh+yny,=|v|[wlcosb=v-w
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14.2.2 Deduction of the Important Results
By applying the definition of dot product to unit vectors i, jand k , we have

(a) ii=li|i|cos0°=1 (®  i.j=i[s|cos90°=0
Z.ZZ‘ZHZ‘COSOOZI Z.lgz‘l“l_c|cos90°:o
lg.lg:|l_c||lg|0050°:1 lg.g':|lg||g'|cos90°:0

(©  u.v=ullv|cos®
= [Yjuf cos(=6)
= [v/lulcos(®)

=v.u

= Uv=v.u

14.2.3 Projection of a Vector along Another Vector
In many physical applications, it is required to know “how much” of a vector is applied
along a given direction. For this purpose, we find the projection of one vector along
the other vector.

el — B
Let OA=u and OB =v :
Let 0 be the angle between them, such that 0 <0 <. :
Draw BM 1 OA.Then OM is called the projection of ; i
v along u. :
oM . 0
From the figure : 0: = cos 0, that is, 0 7 Ij 4
OB < ~
o |v| cos 6 &

OM =|OB|cos 0 =|v| cos 0 (1)
Now, u.v=|ul|v|cosd =|ul(|v|co®) ) =|u|(OM)
= (magnitude of u). (projection of v along u)
Thus, geometrically, the dot product of two vectors represents the product of the
magnitude of one vector and the projection of the other vector onto it. In other words,
the dot product of two vectors shows how much one vector extends in the direction of
another.

Now, by definition, cos = — (2)

From (1) and (2), O_M=|\_;|. == =2
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Projection of v along u = uy

| ul

imi g u.v
Similarly, projection of u alongy ===
v

14.2.4 Properties of Dot Product

Let u, v and w be vectors and let ¢ be any real number, then

(i) u.y=0 = u=0o0ry=0

(i1) u.v=v.u (Commutative property)
(i)  u.(v+w)=u.v+u.w (Distributive property)
(iv) (cu).v=c(u.v) (c is scalar)

©  wu=lf

14.2.5 Dot Product of Vectors in terms of their components
Letu=aii+ bij + cik and v = axi + b2j + c2k be two non-zero vectors.
From distributive law we can write:
u-v= (ai+b j+ck) (a,i+b,j+c,k)
=aa,(i-)+ab,(i- Z)"‘alcz(i ck)+bay (- D+bb,(J - J)+bie, (- k)
+aay (k- D)+cby (k- )+ (k- k)

= u-v= aa,+bb, + ¢c,

1~
1~

i-J
Hence the dot product of two vectors is the sum of the product of their corresponding

components.
Example 6:  Show that the components of a vector are the projections of that vector

along i, j and k respectively.

Proof:  Let v=ai+bj+ ck,then

Projectionofyalongg':ﬂ:(ag'+bj+clg)-g':a
7] -
. v.j
Projection of yalong j==—==(ai+bj+ck)- j=0b
i
.. v.k . .
Projection of valong k ==—==(ai+bj+ck)- k=c
k| -

Hence components a, b and ¢ of vector v=ai + bj + ck are projections of vector v

along i, j and k respectively.
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Example 7:  Prove that in any triangle ABC
(1) a’*=b*+c*—2bc cos A (Cosine Law)
(11) a=bcosC+ccosB (Projection Law)

Proof:  Let the vectors a, b and ¢ be along the sides BC, CA and 4B of the triangle
ABC as shown in the figure.

(i) atbtc=0

= a=-(b+o

Now a-a=0b+c) (b+o)
= =b-b+tb-ctc-btc-c
= a?=b*+2b-c+c* (o b-c=c-b) b
— a*=b*+ c? + 2bc cos (m— A)
a*=b*+c?—2bccos A A

Take dot product with a

a-a=-a-b-a-c /n/B C
=—ab cos(n — C) —ac cos(nm — B)

= —ab(—cos C) — ac(—cos B)

v

I

2

a- =abcos C+accos B
= a=bcosC+ccosB
Example 8:  Prove that: cos (a — 8) = cos a cos f + sin « sin /3
—> —
Proof: Let O4 and OB be the unit vectors in the
xy —plane making angles o and /5 with the positive x-axis. “ A
So that ZAOB=a -3
N '
Now OA4 = cos @i + sina j B
E— . -
and OB =cos f5i + sin [ )
— > —> _. .
OA4 - OB = (cos ai+sina j)-(cos Si+sin ) 5 >x

= |OA||OB|cos(a— f3) =cos a cos f + sina sin f3

cos(a — ) = cos @ cos ff+sina sin 3 (- ]0OA4|=|0B|=1)
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14.2.6 Orthogonality of Two Vectors

Definition: Two non-zero vectors u and v are perpendicular if and only ifu- v=0.

. . T T
Since angle between u and v is E and cos 5 =0
As 0 - b =0, for every vector b. So,
T the zero vector is regarded to be
u.v=|u||v|cos — .
== == ) perpendicular to every vector.
u.v=>0

Corollaries (1) If 0 =0 or m, the vectors u and v are collinear.
(i) If6=%,cose=0 = u-v="0

So, the vectors u and v are perpendicular or orthogonal.
Example 9: If g=3g’—l—2]_c and 1_/=g'+21—l£, then find u- v.
Solution: u-v = 3) 1)+ (-1D2)+(-2)(-1)=3
Example 10: If u=2i—4;+5k and v=4i-3j—4k, then prove that uand vy are
orthogonal.
Solution: u-v=02)4)+()(3)+(5)(4)=0
= wuand y are perpendicular
Example 11: Find a scalar o so that the vectors 2i+a j + Sk and 3i+/ + ak are

orthogonal.
Solution: Let u=2i+a j+5k and y=3i+ j& k
It is given that u and v are orthogonal
u.yv =0
= 2i+aj+5k).Gi+ j+a k)
= 6+a+5=0
a=-1
14.2.7 Angle Between Two Vectors

The angle between two vectors 1 and v is determined from the definition of dot product,
that is

(a) u.v=|ul||v|cos, where 0<0<n
u.v
= cos 0 =——=
Jul|v]
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(b) fu=ai+bj+ck and  v=a,i+b,j+c,k, then
u-v=aa,+bb,+ cc,

u|=+Ja’+b*+c? and |v|=+d’+b>+c?
<4 1 1 1 — 2 2 2

u-v
cos 0=—=

|u

V|
aa,+ bb, +c.c,
\/af +bl +c \/az2 +b]+c;
Example 12: Find the angle between the vectors.
u=2i—j+k and v=-i+j

cos 0=

Solution: u.v =(2i—j+k)-(—i+j+ Ok)
=)D +EHA) +(1)(0)=-3

and  [u|=|2i—j+k| =@ +CD+0) =6
[vl=l=i+ j+O0k| =17+ (1) +(0) =2
uy

Now cos 0=

lul-|v|
= cos 0 = -3 ——ﬁ
Je2 2
o =%
6

Example 13: Show that the vectors 2i — j + k , i — 3/ — 5k and 3i — 4 — 4k are the

sides of a right triangle.

Proof:LetE=2g‘—l+lg,1§_C’=g'—3l—51gand g
AC=3i—4)— 4k
Now AB+BC = (2i— j +k)+ (i -3 - 5k)
= 3i— 4/ — 4k=AC (third side)
;IE, é_(/: and A—é fOI‘I;l a triangle ABC. .

Further we prove that AABC is a right triangle 4 B
= AB-BC= (- j+k) (-3]-5b
=)+ D)3+ ()(-5)=2+3-5=0
4B L BC
Hence, AABC is a right triangle.
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14.2.8 Work done By a Constant

Force

If a constant force F,, applied to a body, acts
at an angle 0 to the direction of motion,
then the work done by £ is defined to be the
product of the component of F in the
direction of the displacement and the
distance that the body moves.

In figure, a constant force F acting on a

body, displaces it from 4 to B. A 4 5

Work done = (component of £ along AB) (displacement)

=(Fcos0)4B)=F-AB=F- d
Example 14:  The constant forces 2i + 5/ + 6k and =i — 2j — k acting on a body,

displaced form position P(4, -3, —2) to Q(6, 1, —3). Find the total work done.
Solution: Total force = (2i + 5/ + 6k)+ (—i — 2j — k)
= F=i+3j+5k
The displacement of the body =Fé =(6-4)i+ (1+3)) + (3+2)k
= d=2i+4j -k
Work done =F- d
=(@+3j+5k)(2i+4j -k)=2+12-5=9 Nm

P EXERCISE 14.2 4

1.  Find the cosines of the angle € between u and v:
() u=2i+3j+k, v=—i+2j+2k (i) u=5i-2j+k, v=3i+4/+2k
(i) u=[-3,2,5], v=[1,6,-2] (iv) u=[2,-3,1],v=[2,41]

2. Calculate the projection of @ along b and projection of b along a when:
() a=2i+3j-k, b=i-2j+4k (i) a=4i-2j+3k, b=i+j+k

3. Find a real number a so that the vectors # and v are perpendicular:
() u=ai+3jrk v=i-2ju k (i) u=ai+2aj—k v=i+aj+3k
4. Find the number z so that the triangle with vertices A4(3, 0, —2), A0,3,1) and
C(1, 1, z)1is a right triangle with right at C.
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5. If v is avector for which v-i=0, v-j=0, v-k=0,find v.
6. (i) Show that the vectors 3i—2j+k, i—3/+5k and 2i+ j—4k form a right
triangle.
(i1)) Show that the set of points P(4,—1, 2), (1,3, —1)and R(-2, 4, 6) form a
right triangle.
7. Prove that the cos(a + ) = cosa cos f —sina sin

Prove that in any triangle ABC .
(i) b=ccosd+acosC (il) c=acosB+bcosA4

(ili) b* =c* +a’* —2cacosB (iv) ¢ =a’*+b*—2abcosC

9.  Find the work done, if the point at which the constant force F'=2i+5/+3kis
applied to an object, moves it from A (2,-3,1) to B(7, 5, 3).

10. A particle, acted by constant forces 5=3§'+4Z—3/£ and F=i+ 4j-k, is
displacement from A(2,1,3) to B(5,4,4). Find the work done.

11. A particle is displaced from the point A(5,—-5,—7) to the point B(6,2,-2).
Under the action of constant forces defined by 10i— j+11k, 4i+5/+9 and
—2i+ j—9k . Show that the total work done by the force is 102 Nm.

12. A force of magnitude 6 units acting parallel to 4i+3j -k displace the point of
application from A(2,—-1,3) to B(7,3,2). Find the work done.

14.3 Cross Product or Vector Product
14.3.1 The Cross Product or Vector Product of Two Vectors and its
Geometrical Interpretation

One of the key multiplication operations involving vectors in space is the cross product.
Unlike the dot product, which results is a scalar, the cross product of two vectors yields
a vector quantity. The vector product of two vectors is widely used in Physics,
particularly in fields, mechanics and electricity. It is only defined for vectors in space.
Let u and v be two non-zero vectors. The cross or vector product of u and v gives a
vector that is perpendicular to both the vectors_u and v, written as u x v, is defined by

uxv=(ullv|sind)n
where 0 is the angle between the vectors, such that 0 < 0 < & and 7 is a unit vector

perpendicular to the plane of u and v with direction given by the right-hand rule.
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Right hand

Right hand

Figure (a)

Figure (b)

Right hand rule
(1) If the fingers of the right hand point along the vector  and then curl towards
the vector v, then the thumb will give the direction of n which is u x v. It is

shown in the figure (a).
(i1) In figure (b), the right hand rule shows the direction of v % u.

14.3.2 Parallel Vectors
If u and v are parallel vectors, then (0 = 0 = sin 0 = 0).

uxv=0 or ux =0

Either sin 9 =0 or |u|=0 or |v|=0
(1) If sin 8 =0 = 0=0° or 180°. Which shows that the vectors u and v are

parallel.
(i1) If u =0 or v = 0, then since the zero vector has no specific direction, we adopt
the convention that the zero vector is parallel to every vector.

Zero vector is both parallel and perpendicular to every vector. This apparent
W1 contradiction will cause no trouble, since the angle between two vectors is never applied
when one of them is zero vector.

14.3.3 Derivation of Useful Results of Cross Products
By applying the definition of cross product to unit

vectors i, j and k, we have:

(@) ixi =|i[]i[sin0°n =0
JxJj =1jlljlsin0°n =0
kxk = [k||klsin0°n =0
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(b) ixj =lill jlsin90°k=k
Jxk=1]11k|sin90°i =i
kxi =|k||i]sin90° j =

() uxy=|ully|sin®n=|v|lu]sin(-0)n=—|v|[[u]sind n

=  uxy=-yxu

@ wxu=|ullu]sin0n=0 :
Note: The cross product of I, l and k are written in the cyclic pattern. (/ \S

The given figure is helpful in remembering this pattern. i J

14.3.4 Properties of Cross Product NS
The cross product possesses the following properties:
(i) uxy=0ifu=0or y=0 (i) uxy=-vxu
(i) ux +w=uxyv+ux w (iv) ux (kv)=(ku)xv = k(uxy)
(v) uxu=0

The proofs of these properties are left as an exercise for the students.

14.3.5 Analytical Expressions of u X y (Determinant formula for u x v)
Let u=ai+b j+c¢k and y=a,i+b,j+c,k, then

Uxy= (ali+b].z+cl]£)x (a2i+bzl+czlf)

= aa,(ix i)+ ab,(ix j)+ac,(ixk) (by distributive property)
+ha,(jxD+bb,(jx ))+be,(jxk) | vix j=k=—-jxI,
+ay(kxi)+eby(kx j)+cc(kxk) | jxk=i=—kx],
kxi=j=—-ixk,
ixi=jx j=kxk=0

= uxv=(be, —¢b)i—(ac, - ca, )1 + (a)b, — ba,)k (1)
The expression of 3 x 3 determinant
ij k
=|a, b ¢|=(bc, —cb)i - (ac, —ca,)j + (ab, — ba,)k
a, b, ¢

The terms on R.H.S of equation (i) are the same as the terms in the expansion of the
above determinant.
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i j k
Hence uxv=|a, b ¢ (i1)
a, b ¢

which is known as determinant formula for u X v.

The expression on R.H.S. of equation (ii) is not an actual determinant, since its entries are
not all scalars. It is simply a way of remembering the complicated expression on R.H.S of
equation (i).

Example 15: Find a vector perpendicular to each of the vectors.
c_l=2£—i+/£ and 12:4g+2i—lg

Solution: A vector perpendicular to both the vectors @ and b is a x b.

i j ok

axb =12 -1 1|=-i+6j+38k

4 2 -1

Verification:
aaxb=Q2i—j+k) (-i+6j+8k)=(2)(D+=DO)+(1)(®) =0
and b-ax b=(4i+2j —k)-(-i+6j +8k) = (=D +(2)(6)+(-D(®) =0

Hence a X b is perpendicular to both the vectors a and b.

14.3.6 Angle Between Two Vectors (Cross Product)

The angle between two vectors a and b is determined from the definition of cross
product.

If 0 is the angle between a and b, then |c_1 X Q| =|al||b]|sinBO

laxb]

lallb|

Example 16: If @ =4i+3j +k and b=2i— j +2k . Find a unit vector perpendicular

= sin 0=

to both @ and b. Also find the sine of the angle between the vectors a and b.

i j k
Solution: axb=14 3 1|=7i-6j-10k
2 -1 2

and  |ax b = \[(7)* +(=6)* + (~10)* = /185

7i—bj—10k
A unit vector perpendicular to g and b = axb N70/7 R

|c_z>< l_)| \185




Unit @ Vectors in Space <79> Mathematics

Now |a|= (4 +(3)+(1)* =426
B = @) + (1) +(2) =3

If 0 is the angle between g and b, then |L_l X Q| =|al|b|sinb

laxb| _ V185
lallb] 3426

Example 17 Prove that sin (a + 8) = sin a cos  + cos a sin /3
Proof: Let OA and OB be unit vectors in the xy-plane making angles a and —f3 with
the positive x-axis respectively.

So that mLAOB =a+/f

= sin 0=

Now OA =cos qi+ sina j A
and OB cos (= )i +sin(—f3)j A
= cos fi—sin ]
ﬁxa:(cosﬁg—sinﬁl)x(cosaﬁsim i) o aﬁ -
i J k
— | OB|[OA|sin(e+ B)k =|cos § —sin B 0 B

cosaa sina O

= sin(a + p)k=(sina cos S+ cos a sin )k
sinf + f§) =sina cos 5+ cos & sin f3

Example 18: In any triangle ABC, prove that

¢ _ b — (Law of Sines)

sind sinB sinC
Proof:  Suppose vectors a, b and ¢ are along the sides BC, CA and AB respectively

of the triangle ABC.
at+b+c=0
= b+tc=-a (1)

Take cross product with ¢
bxc+cxc=—axc
bxc=cxa (rcxc=0)

= |bxc|=|cxal|

Al cAl B,
1blc| sin(r—A)=|c||a| sié —B) /U?T-B

= bcsinA=casinB = bsinA=asinB
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b a

= (i1)
sinB sin 4
Similarly, by taking cross product of (i) with b, we have
a c
= (111)

sind sinC

3y a b ¢
From (i1) and (iii), we get = =

sind sinB sinC
Example 19: If u=2i- J +k and v=4i+2 J= k , find by determinant formula

(1) ux_u (i) uxy (ii1) yxu
Solution: u=2i—j+k and v=4i+2j-k

By determinant formula

i j k
(1) uxu=2 -1 1/=0 (+- Two rows are same)
2 -1 1
i Jj k
()  uxv=[2 -1 1|=(1-2)i—(-2-4)+@E+4)k=—i+6j+8k
4 2 -1
i j k
(i) yxu=[4 2 -1=(2-1)i—(4+2)j+(-4—dk=i—6-8k
2 -1 1

14.3.7 Real World Applications on Cross or Vector Product
(a) Area of Parallelogram
If u and v are two non-zero vectors and 6 is

the angle between u and v, then |g | and |y|

represent the length of the adjacent sides of
a parallelogram, (see figure). We know that:
Area of parallelogram = Base x Height

= (Base) (4)= |ul[v|sin@

|<VV

. Area of parallelogram = |g Xy |
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(b) Area of Triangle
From figure it is clear that

Area of triangle = % (Area of parallelogram)

Area of triangle = %w x|

where u and v are vectors along two adjacent sides of the triangle.

Example 20: Find area of the parallelogram whose vertices are
P(0,0,0), O(-1,2,4),R(2,-1,4) and S(1, 1, 8).

Solution: Area of parallelogram = |P—é x PR|
Where |PQ| and |1?I€| are two adjacent sides of the parallelogram
PO=00—-0P=(-1 —O)g’+(2—0)l +(4—O)l_€=—g’+2l+4l_€

PR =OR~OP=(2~0)i+ (-1 -0)] + (4~ 0)k=2i -]+ 4k

ik
Now  POXPR=|-1 2 4/=@8+4)i—(—4—-8)j+(1—-4)k
2 -1 4 B
—12{+12, -3k

. Area of parallelogram = |PQ X PR| = ‘12;’+ 12 —311‘

= 144 +144 +9 = /297 square units
Example 21: Find the area of the triangle with vertices 4(1,—1,1), 82,1, 4)and
C(-1,1,2) . Also find a unit vector perpendicular to the plane of triangle ABC.
Solution: AB =O0B—0A=Q2-1)i+(1+1)j +(-1—- k=i +2j-2%k

AE=0C-0d=(1- i+ (14 1] + @ k=2 +2j+k

i J k

—_— — B /=

ABxAC=|1 2 2|=2+4)i-(1-4)j+2+4k=06i+3j+6k
-2 2 1

—

—
The area of the parallelogram with adjacent sides |[AB| and |4C| and is given by

—_ —

|ABx AC| = [6i+3+6k| = /36+9+36 =81 =9

. = = 1, . . 9 .
Area of triangle = —| 4ABx AC|=—|6i + 3 j + 6k| = = square units
2 2 2
ABx A 1

A unit vector L to the plane ABC= S~ = —(6;‘+ 3j+ 6l_c) = —£21+ Jj+ 2/_c)
|ABx AC| 9 B -
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(¢c) Moment of Force

Let a force Fi (Fé) act at a point P as shown in the figure, then
moment of F about O

= Product of force F and perpendicular ON the direction of n

—> —>
= (PO)ON)(n) = (PO)(OP) sin 0 (1)
= 0P P_Q> =rxF
Example 22: Find the moment about the point M (-2, 4, —6) of
the force represented by AB, where coordinates of points 4 and B are (1, 2, —3) and
(3,4,2) respectlvely

Solution: AB OB OA (3—1);’+(—4—2)Z+(2+3)/§:2;’—6Z+5]£
MA=(1+2)g'-|—(2—4)l-|—(—3+6)/£:3;'—21+3l_c
Moment of AB about M(-2, 4, —6)=7_’><E=ﬂ Xjé

i j ok
=3 -2 3
2 -6 5
=(-10+18)i—(15-6)j+(—18+4)k
—8i—9—14k B

Magnitude of the moment = \/(8)2 +(=9) +(-14)* =+/341

P EXERCISE 14.3 4

1.  Compute the cross product axband »x a. Check your answer by showing that

each g and b are perpendicularto gx » and bHx a.
() a=2+j-k, b=i-j+k (i) a=i+3j+2k, b=2i-j+k
(i) a=2i-2j+k ,b=-i+j+3k (iv) a=—-4i+]-2k b=2i+j+k

2. Find a unit vector perpendicular to the plane containing g and b. Also find sine

of the angle between them:

() a=i+6j-3k  b=2i+j8k (i) a=—i-j—k b=2i-3j+4k

(iif) Q:l""j"'lfab:i_l—lf (iv) Q:5£+Z—3/£, Z_):—21'+4Z+1£

3. Find the area of the triangle, formed by the points P, Q and R.
O P2,3,5;0(1,2,00;R(4,1,2) () P0,0,1); 0(2,-1,2) ; R(-1,3,2)
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4,

10.
1.
12.

13.

14.

15.

16.

Find the area of a parallelogram, whose vertices are:

(1) A(0,0,0);B(1,2,3); C2,-1,1);D(-1,3,2)

(i) A(1,1,1);B(4,2,3); C(5,6,7);D(2,5,5)

(i) A(4,5,6);B(1,3,2); C(-2,0,1);D(1,2,5)

If the cross product of the vectors # = 7i—4j+5k and v=ai—bj+3kis zero, then
find the values of a and b.

Which vectors, if any, are perpendicular or parallel

() u=5—j+kv=j-5k;w=—15i+3j-3k

() w=i+2j—kiv=—itjthiw=-"Ti-mj+"k

Use the definition of cross product, for any vectors u, v, w and scalar &, prove that
(D) ux(=p=0 (i) wxy=—yxu

(i) wx(kv)=(kw)xy=k@xy) (V) wx(+w)=@xy)+@xw)

Prove that: ax (b+c¢)+bx(c+a)+cx(a+b)=0

If a+ b+ = 0,thenprovethat axb=bxc=cxa

Prove that: sin(a —,B): sina cos f + cosa sin

Ifaxb=0anda- b=0, what conclusion can be drawn about g or b?
Use the definition of cross product, prove that for any vectors u and v
(u+v)x (u—v)=-2uxv)

Find the moment about the point M(1, —3, 3) of the force represented by 45,
where the coordinates of points 4(4, 3, —1) and B(—1, 3, 7) are given.

A force F'=6i+4j—4k is applied at the point A(1,~1,2). Find the moment of
the force about the point B(3,—-2,3).

Give a force F=2i+ j-3 kacting at a point 4(1,—2,1). Find the moment of F

about the point B(2,0,—2).

A force F'==2i+ j-3 kis applied at P(~1,-3, 2). Find its moment about the
point O(4, 2, 2).
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14.4 Scalar Triple Product
14.4.1 Scalar Triple Product of Vectors

The scalar triple product is a key concept in vector calculus with wide-ranging
applications covering various fields. In three-dimensional space, it provides a
significant role in calculating the volume of geometric shapes such as parallelepipeds
and tetrahedrons, defined by three vectors, which we will learn later in this chapter.
Additionally, it plays as a vital tool for determining the coplanarity of vectors,
providing a condition to verify whether three vectors lie within the same plane.
There are two types of triple product of vectors:

(a) Scalar Triple Product: u- (v x w)

(b) Vector Triple Product: u % (v x w)
In this section we shall study the scalar triple product only.
Scalar Triple Product
Let u, v and w be three non-zero vectors
The scalar triple product of vector &, v and w is defined by

u-(vxw) or v-(wxu) or w-(uxy)
The scalar triple product - (v xw 1s written as
u-(vxw)=[uyvw]

14.4.2 The Volume of the Parallelepiped
The triple scalar product (¥ x v) - w

represents the volume of the parallelepiped
having u, v and w as its conterminous edges.

M
As it is seen from the formula that: height = |w| cos OI . O\
(uxy)w=luxy||w]|cos 6 © g‘o?*%/
. (8]
Hence, (i) |ux v= area of the pse?

parallelogram with two adjacent sides u and v.
(i1) | w]| cos 6 = height of the parallelepiped

(ux v)-w=|uxv||w|cos 6 = (Area of Parallelogram) (height)

= Volume of the parallelepiped
Similarly, be taking the base plane formed by v and w, we have
The volume of the parallelepiped = (v X w) - u

And by taking the base plane formed by w and u, we have

The volume of the parallelepiped = (w X u) - v
So, we have: (u X v) - w=@xw)  u=(Wwxu)- v
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14.4.3 The Volume of the Tetrahedron
Volume of the tetrahedron ABCD :% (area of AABC)(height

of D above the place ABC)
lel|u><v|(h) A C
:% (Area of parallelogram with AB and AC as adjacent sides) (/) B

Note:

As volume is always positive
so ignore negative sign if
[uyw] (u x v) - wis negative.

:% (Volume of the parallelepiped with u, v, w as edges)

1
6
14.4.4 Scalar Triple Product of Vectors in Terms of Components
Letu=ai+b j+ck, v=a,i+b,j+c,kand w=a,i+b,j+ck

Thus, Volume = é (uxy)-w=

ik
Now, vxw=la, b, c,
a; by cy
= vx w=(bye; —byc,)i—(aye; —asc, )l +(aby —asb, )k

u.(vx w) = a(byc; —byc,) - b(ac, —ac)) + ¢ (a,b; - ash,)

a b ¢
=  wxw=la, b
a; b ¢

Which is called the determinant formula for scalar triple product of u, v and w in
component form.

Example 23: Prove that dot and cross product are inter changeable in scalar triple
product.

Solution: Consider #=ai+b j+ck, v=a,i+b,j+c,k and w=a;i+b,j+c;k

are the arbitrary vectors.
The determinant formula for scalar triple product of vectors u, v and w is given by:

a b g
u-(vxw=la, b ¢
a, b ¢
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a, b ¢

=—la, b ¢ Interchanging R, andR,

a, b ¢

=la, b ¢ Interchanging R andR
a, b ¢

—we X V)= v)w @ b=5-%

Hence, u- (vxw)=(uxv)-w

Thus, the position of dot and cross can be interchanged in scalar triple product.

Example 24: Assuming i, j and k are unit vectors in a cartesian coordinate system.

Prove that I jx k=j. kxi=k-ix.j
Solution: Given i, J and £ are unit vector,
So, we can write i=i+0j+ 0k, j=0i+ j+0k, k=0i+ 0j+kthen determinant

form for scalar triple product of unit vectors 7, j and k can be written as:

1 0 0
i jxk=]0 1 0/=11-0)=00-1)+00-0)=1
B 00 1
010 00 1
jokxi=|0 0 1]=00-0)-10-1)+00-0)=land k.ix j=|1 0 0=
B 100 01 0

Therefore [. jX k=j. kxi=k.ix j

Example 25: Find the volume of the parallelepiped determined by
%:£+ 21_117 ‘_/:i_22+3]£: ‘/_V:l_7l_4]£

1 2 -1
Solution: Volume of the parallelepiped = u.yx w=[1 -2 3
1 -7 -4

= Volume =18 +21)-2(4-3)-1(-7+2)=29+14+5
= 48 cubic units
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Example 26: Find the volume of the tetrahedron whose vertices are A(2, 1, 8),

B@3,2,9), C(2, 1,4) andD(3 3,0).

Solution: AB = 0B - O4 = (3- 2)i+(2-1)j+0O-8)k =i+ j+k
AC=OC—0A=(2—2)g’+(1—1)l'+(4—8)lg =0i-0, -4k
AD= 0D - 0A= (+3-2)i+ (31 +(0-%_ =i+2/-8k

Volume of the tetrahedron = % [AB AC AD]

I 1 1
1 1 1 4 2
:go 0 -4 :g[l(O+8)—1(0+4)+1(0—0)]:8[8—4]:g=§ cubic units
1 2 -8
14.4.5 Coplanar Vectors and Condition for Coplanarity of Three
Vectors
Vectors are coplanar if they lie in the same plane or can be Vxw

combined in the same plane.
Consider the three coplanar vectors u,v and win a plane as

shown in a figure.
The cross product vx w gives a vector that is perpendicular

to both the vectors vand w, AS u,v and ware coplanar, so
vx wis also perpendicular to
Thus, the dot product of # and vx wis zero. i.e.,
u- (vxw)=0 - If vectors a and b are perpndicular thena-b=0
Thus, we conclude that if the three vectors u, v and w are coplanar then their scalar

triple product is zero.
Properties of triple scalar product
1. Ifu, v and w are coplanar, then the volume of the parallelepiped so formed is zero

that is (u x v) - w = 0 and hence the vectors u, v, w are coplanar & (uxvy)- w=0
2. If any two vectors of scalar triple product are equal, then its value is zero i.e.,
[uuw]=[uyv]=[uww]=

Example 27: Prove that four points

A3, 5,-4), B(-1,1, 1), C(-1, 2, 2) and D(-3, 4, —5) are coplanar.

Proof: AB=0B - 04 = (-1+3)i+(1-5)j+(1+ 4)k =2i-4,+5k
AC=0C— 04 = (-1+3)i+(2=5)j+ (2 +4)k =2i-3j+6k
AD=0D-04= (-3+3)i+(4-5)j+(-5+4k =0i— j—k=-j-k

Volume of the parallelepiped formedZi A_é and E is
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2 4 5
[AB AC AD] =2 -3 6|=2(3+6)+4(—2—0)+5(~2—0)
0 -1 -1
~18-8-10=0

As the volume is zero, so the points 4, B, C and D are coplaner.
Example 28:  Find the value of a, so that ai+j, i+ j+3k and 2i+ j-2k are

coplanar.
Solution: Letu=ai+j+ 0k , v=i+ j+3k and w=2i+ j—2kbe three given
vectors. Scalar triple product of given vectors is
a 1 0
[uvwl =1 1 3|=a(-2-3)-1(-2-6)+0(1-2)=-& +8
2 1 =2

The vectors will be coplanar if -5 +8=0 = «a = %

14.4.6 Applications of Vectors in Real World

Example 29: A plumber exerts a force of 30 pounds along the negative y-axis on a
lever connected to a machine. The pivot point of the lever is at the origin (0, 0, 0), and
the force is applied at the point (1.2 ft, 0.5 ft, O ft). Determine the torque produced by
this force about the pivot point.

Solution: The position vector » from the origin [EGKIITETA  Torque quantifies the

: : : rotational effect of a force applied to an object
to the pOIHt (1 '2’ 05’ 0) 1§ given by about a pivot point. It is determined by taking

r=12i+0.5 l + 0k the cross product of the position vector 7

— . . (which extends from the pivot point to the
The force F'is exerted downward along negative  point where the force is applied) and the force

y-axis with a magnitude of 30 pounds is  vector £ itsclf.
F=0i-30j+0k

Torque t produced by the force = rx F

Using determinant formula of cross product

ij k

=112 05 0
0 -30 0
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= 0i—0/-36k
T = —36k pound-feet

Thus, the torque is 36 feet-pounds in the negative z-direction

Example 30: During a building construction, a crane exerts a force to pull a concrete
block, represented by the vector F = [4500, 3300, 2140] Newton. Each component
corresponds to the force exerted along the x, y, and z axes, respectively. What is the
magnitude of this force?

Solution: Using the formula for the magnitude of a vector in three-dimensional space

|F| = 3% + 7 + 2% =[4500 + 33007 + 2140°

= /20250000 + 10890000 +4579600 = /35719600 =5976.59
The magnitude of the force exerted by the crane is approximately 5976.59 Newton.
Example 31: The components of u=3007 + 250,/ +180k represent the respective

number of jackets, shoes, and handbags sold at a store. The components of
v=3500i + 4200, +6840k represent the respective prices (in rupees) per unit for

each product. Find u- v and explain what the result tells us in real life.

Solution: The dot productof u and v =u-v
=(3007 + 250,/ +180k )- (3500; + 4200 + 6840k
= 1,050,000 + 1,050,000 + 1,231,200 = 3,331,200

The result u-v= 3,331,200 tells us that total revenue generated from selling all the
three product is Rs. 3,331,200.

P EXERCISE 14.4 4

1. Find the volume of parallelepiped for which the given vectors are three edges

(1) 2:3l+2l_€, l/:_l+2l+]_€, y_v:_l+4]£
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(98]

10.

11.

12.

13.

Prove that the vectors i —2j+3k, —2i+3j—4k and i—3j+ 5kare coplanar.
Find the constant a such that the vectors are coplanar.
(i) i-j+k, i—-2j-3kand 3i—-aj+5k
(i) i-2aj-k, i-2j+2kand ai-2j+k
Prove that the points whose position vectors are A(=6i+3;+2k),
B(3i—2j+4k), C(5i+7j+3k), D(-13i+17j—k) are coplanar.
(a) Find the value of :
() 20x2j-k (i) 3jkxi (iii) [k i j] (iv) [iik]
(b) Prove that u- (vx w)+ - (wxu)+ w- (ux y) =3u- (vx w)
Find volume of tetrahedron with the vertices
i (0,1,2), (3,2,1), (,2,1) and (5,5,6)
i) 2,1,8), (3,2,9), (2,1,4) and (3,3, 10)
Prove that the points whose position vectors are A(3i+2)—k), B(i—2j+k),
C(6i+4j—2k), D(9i+ 6, —3k) are coplanar.
Prove that for any three non-zero vector u, v and w
w+v)[(v+wx (w+u)] = 2[u v w]
Consider a parallelepiped determined by the vector u = 2i+ 4/ - 3k,
v=>5i—3)+6k and w=4i—7j— 2k.If the base of the parallelepiped is
define by the vectors u and vy then find the height of the parallelepiped.

A mechanic applies a force of 50 pounds along the positive x-axis on a wrench
connected to a bolt. The pivot point of the wrench is at the origin (0, 0, 0), and
the force is applied at the point (0 ft, 2 ft, 3 ft). Determine the torque produced
by this force about the pivot point.

A drone flies from point (1, 2, 5) to point (4, 6, 9), with each unit representing a
meter. What is the magnitude of the displacement the drone experienced during
this flight?

The vector u=50i+75j+65k shows how many belts, pants, and shirts were

sold at a store. The vector w=1500i+3500,+ 3000k shows the price (in rupees)
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of each item. Find u- w and explain what the result tells us in real life.

14. A force F = (20, —10, 30) N is applied at a point P(2, —1, 4) in 3D space. The

15.

pivot point is at M(1, 2, —3) . Calculate the torque produced by this force about
the pivot point M.

An electric shop sells three types of appliances: Fans, Heaters, and Ovens. The
monthly sales quantities are 500 units of Fans, 300 units of Heaters and 200 units
of Ovens. The profit per unit for each appliance is Rs 500 for Fans, Rs 400 for
Heaters, and Rs 2,000 for Ovens.

(a) Represent the monthly sales quantities and the profit per unit as vectors.
(b) Calculate the total monthly profit using vector operations.
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V) {4 40,40" 2. i) 256w ii) O i) 4 iv) -1 v) -32
6. xX’+2x+4=0




<>

EXERCISE 1.5

Mathematics

1. i) ii) iii)
iv) V) Vi)
vii) viii)
2. i) 5(cos53.13 +isin53.13) i) ﬁ(cos%+isin%j iii) 1~(cos%+isin%j
iv) 5(cos4—”+isinﬂj 3.0 2+23 i) _—3+£i iii) —6.47 —2.17i
3 3 4 4
iv) —10.69—2.85 v) —2.43+2.86i vi) 1.68—1.09i vii) —12+0i
4. i) —6.54+1532i (i) —1.46+6.68i (iii) 45(005 1192 +isin 119;’ j
. Tz T : o . .
(w) cos-—+isin-— ) 5. i) —1.62+12.47i (i))—12.69 +1.01i (iii) 74.64—19.25i
(iv) %+Oz‘ 6. —1+if3 7. 5345 8. |7=22, arg(z)=%r+2n7r
1 T .. T
9. y=Bx-2y3+1 12.y=2 13.x=1 14. y=- 15. 120/ cos——isin—
3 12 12
16. Rectangular form: 0 + 18i, Polar From: 18(cos—+zs1 %]
EXERCISE 2.1
l.(a @) 8 (i) -1 (i) x> —4x+3 (v) x* +6x>+8



- Answers <9> Mathematics
() (i) V-3 G 3 (i) V2x—1  (iv) V2x2+9
. L2 hy. (hY) . ., 2
2. (i) 4 (i) ZCOS a+5 sin 5 (i) A~ +3ah+ h+3a +2a

. 2
(iv) sinh 3. (@ A= 2 b) C=2d7d () S=6V¥
hcosacos(a+ h) 16

4. (i)Domain g = (—o0,),Range g= (—o0,)
(i) Domain g =[-2,%),Range g=[0,)
(iii) Domain g = (—o0,0),Range g=[0,)
(iv) Domain g = (—o0,%0),Range g= (—0,0)
(v) Domain g = (—o0,0),Range g= (—0,2)U[7,0)

5. a=2,b=-2 6. Domain g = (—0,3)U(3,%0),Range g (—o0,—1)U(—1,0)
7.4) @) 30m  (b) 17.5m (©) 11.1m (i) x=2 sec
8. (i) Domain f = (—o0,0),Range f= (—o0,)

(i) Yes, the function is one-to-one, because equal ouputs implies equal inputs.
(iii) Yes, the function is onto when the codomain is all real numbers.
9.(i) Domain /= R—{-1},Range f = R—{2} (ii) f(x)isnotonto. 11.g(x) is surjective.
EXERCISE 2.2

Q.1(1)
(i) A (iif)
(iv)
Q.2(i)
(i) | main (ii)
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(iv)
(v) T (i)
(vii)
‘.g\.
(viii)
3 G)
(ii)
(iii)
(iv)
W)
(vi) '
(vii)
T i [/ /’
(vii)




- Answers <9> Mathematics

6. (i) (@ 30m (b) 17.5m (c) 1l.lm (i) 2seconds 7. (i) 14 months (ii) 373.2
metres 8. 25 grams

EXERCISE 3.1
1.
(1) Minimum value at x =—3 is 4 (i) Minimum value at x =—2 is — 4
(iii)Maximum value at x =4 is 29  (iv)Maximum value at x = 73 is %
.. . -1 . 169
(v) Minimum value atx= — 1 is— 16  (vi)Maximum value at x = T is e

2.
(i) Minimum value at x = 2 is — 4; Domain /= (—0, 0); Range /= [ 4, )

(i) Minimum value at x = % is Tl ; Domain /= (—0, 0); Range /= [le o0)
(ii1))Maximum value at x = 1 is — 7; Domain /= (—o0, ©0); Range /= (—o0,— 7]
(iv)Minimum value at x = 2 is 0; Domain /= (-0, 0); Range /= [0,00)

(v) Minimum value at x = — 1 is — 9.3; Domain f'= (-0, o0); Range /= [- 9.3,00)

(vi)Maximum value at x = 71 is %TS Domain f= (-0, ©); Range /= (-0, 2]

3.
(i) f'(x)= —J/x+3 ; Domain /! = [~ 3, 0); Range ! = (~0,0]
(i) f! (x) = —3—+/5+x ; Domain /! = (- 5, ); Range /! = (- 3, )

(i)t (x) = MR A “22_3+x ; Domain ! = [~ 3, ); Range /! = [2, )

(v)f! (x) = # ; Domain ! = [71, o0); Range /! =[5, o)

W) 1 x)=3+ ’ 5 ; Domain £ =[1, 0); Range /! =[3, )

Vi)' (x)= —4— —(x+5) ; Domain f! = (—o0,-5); Range ! = (—0,—4]

4.

1) {-2,2} (i) {~1,-4} (iii){3—+/5,3++5} ,
R [URCEE (w)ﬂ S L MR GN ”

3 —J17+3 ¥

(vii)  {(—5+3.5+3)} (viii) H—— 1 Jﬁ+3,

4

31
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EXERCISE 3.2
1.

O L3 @ G W)

a+b 2
ab m}
V) {1 od){%,Zgﬁ} (vi) {4}  (vii) {4,20}

(x){2} &) {4y (x1){0,2} (xii)  {0,—-3}
B I
2. 15 sheep 3. 97 dozen eggs 4.6 hours
5.20 days 6.0 <s<4756 km/h 7.[0.586 sec, 3.414 sec]

Exercise 4.1

-2 -2 3] 1 1 1
Q23 |2 0 -3 ()2 -3 4

0 -2 3l -4 -2 2

-3 =2 5] -1 =2 1]
Gii)| 3 -5 -3 iv))1 5 =3
-3 -6 4l 32 21

Q.4
11 -3 -6 1]
-3 29 19 -5

1) 44" =|-5 9 -~11 i
() ) -6 19 22 -4

8 —11 441

1 -5 -4 5]
-1 2 3 0|
Ggi)l 1 0 2 =2
-3 5 3 -l
_ 4 3 -25] - -3
Q.5 (1))(2[1 35 7 |J (1) | -1 -3 -10

-5 4 2 ]

Exercise 4.2

1. ()-21 (i) —148 (i) =18 (iv) 9a’°b-b’ (v) —123 (vi) 4xyz
Q4 (i) Ay=-3,4,=0,4,=7]4=-5
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(1) B, =-2,B,,=-1,

33 — 4o

Q.5(@) x=2or-1 (i) x=0or1 (iii)x=2or3

Q.7(i) 147,0 (ii) 0, 96
1

A==, =—4

9 )

Q 2 Exercise 4.3
7 (22 7 13 8 26]

4 2 5 5 5 3 3 3

R P R TN PR B

QLM 2 W3 0 5 W3 3
LT T . 2 -1l
13 6 3 |5 5 5] 3 3

Q.2(1) Rank =3 (i) Rank =3 (iii)Rank 4

Q36 {(Lo1)} i) (%%%} ( —37}}

8 10 11
Q.4(i) {(1,1,0)} (ii) (? 3 Ej} (ii){ (1,1,1)}

Q.5()) %{%%%j} { )1(—2 L Toj} (im%(%’_?l’_l_?j}

Q.6(1) {(O’ O’O)} (i) X =280, =—1,5, =1 g, any value of't
(1) x, = =3¢, x, = 2t,x, = ¢ for any value of ¢

161][36][21]
7. A(-4,1),B(2,5,C0,3) 8. A(-6,—-4,1) 10. {22 {43 {26
1511 491)| 16|
11. Hold Fire
EXERCISE 5.1

1 1 1 1 1 1 5

-1 26+D Pty YA tre2 a3

-1 30 5 ST SR
X
4 862 x5 i+ O 3(x=1) 3(2x+1)

1

3 N 3 N 15
8(x—-2) 4(x—-4) 8(x-6)

2 2 2 2 2
a —b a —c a—d2

+
E=DNT-D)E+D) (B =-NT -+ (=N =) +d)

6. 1+

7.
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2 1 3 5 22 27 1 1 2
8. ——+ + 9. —5- - 0. ———+ .

X x-17% -1 x+2? (x+2) x—=1 x+1 (x+1)

162 288 32
11. 2x—2+ + —
25(x—-3) 25(x+2) 5(x+2)2
EXERCISE 5.2

1 17x—6_ 17 5 1 . 1—x 3 -2 . 2x+ 33

s+ S0+ 2050 7 e TBETY) T peiy,
6 2 N x+1 - 1 _ x+1 N x+1

3D 3 =D 4t 2@+ 1)
3 -1 N x+2 4 x+14

366=2) 3602 +2)  6(P+2)°

EXERCISE 6.1
1.3i) 24, 28, 32, 36 (i) -3, -5, -7, -9
3
2008, 11,14 (i) 3,5,13 (i) —4,-3,0Gv) -1, 3,5
14
™)3.4,5 (vi) 1,25, 5929 (vii) 4, 16, 36 (viii) -7, 28, —63
1

3.120 4.a)6n+1 (b) 10-3n (¢) =7 (d) 11n-26
5.7

EXERCISE 6.2

L) d=7;30,37 ()d=~2;5+3\2,5+4[2 2. ()2,1528  (i)12,-1,-14
3.3n+7,4+6n 4.31)94(i)-47 5.75 6.No 7.58.25 9.62 10.7,12,17, ... ; 502
10
12.128 13.164 14. (7”7 4) :No:Yes  15.13
EXERCISE 6.3
25 19 17 32 77

i ii 2 2 b 9 b 9
1.G) 2, (i) >+ 5> 2.1,21 3.6\/5 NN 4.5,90r957.0

EXERCISE 6.4

+
1.(i) 630 (ii)ﬂ;’T;l 2.(i) 1300 (ii) 230 (iii) 1932 3.22 4.14, 51
5. 9cm, 12cm, 15¢m 6. (i) n(3n — 2) (ii) %(971— 13) 7. 650 8.385
9.200000 10.3+7+11+... 11.73 12.58,110r11,8,5  13.32
14.5,7,9,110r 11,9,7,5 15.3,4,5,6,70r7,6,5,4,3 17. 11

EXERCISE 6.5

- . ) —579 579 =579 579
1. 7¢ 2.6561 3.5 4.(i)243,81,27,9,3 (i) 579, =5 . g > ¢

5.-64 6.2,6,18,...;2:3"" 8.1/mn 9.2,6,18 0or 18,6,2 10. 81 - %/_9
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12.2,7,120r10,7,4  13.1,2,30r17,2,-13  15. _%

EXERCISE 6.6
1. (i) 4i or —4i (ii) 4 or —4 (iii) 3\/6 or — 3\/6 2.6,12,24,48 4. 5 5. 4,160r164

6. 28o0r8§,2
EXERCISE 6.7

7174453 2, 1 LN . 1[10( m }
L 700925 2% 1723.(1)9[n 9(1 10") (11)3[9 (10”-1) -n

|
La1-p)a-d"-ba-a)(1-8") fl-r"_k(l—k”r")&
YO @op1-a)1-b) BTy 1k
515!1—1!
T8

EXERCISE 6.8
1.14080  2.2(4n—1)3"" 3.Q2n+3)(=3)"; =195  4.3i) 6+ (4n— 6)2"

oot e )
m§%@*@?%YIM%%maﬁ¥%Y1

2—(n+ 1)x"+ 2nx™!

. 21
5.(1)6 (11)4 8. (-7 9.n2n+1)
0 2 3x(1-x") @Bn-1n" 2+x

1-x (1-x? I-x ’(1-x7?

EXERCISE 6.9

11 . 121 .3 3 1 3 3 1
1'(1)E(“)H 2.(1)—1,2,5,7,5 (“)Z’ﬁ’ﬁ’ﬁ’é 3'E
4.-10 5. 67 6.-1 8.3,60r6,3 9.2,80r8,2

EXERCISE 6.10

1G5 (2n2+n-1) Gi) UURRVCIERY 12

2

2 2
(ntl)
()5 @ +21n+16) (3 (4n* 1) R ke
) nn+ D(+2)
(vid g (3 + 16n% +30n+23) (i) g

2

1
(x) T3 n(n + 1)+ 3n +2) (x) g (9n° + 58n% + 1350 +134)

2.()-n(2n+1) (i) 3¢ (4n% + 15+ 17) 3.6y n(n® + 20+ 2) (i) g2n% + 15n+19)

4.6y n(8n% +10n+5) (i) n(4n> + 4n® + 5n+8)
EXERCISE 6.11
1.Rs.65  2.Rs.239077.50  3.5% 4. Rs. 173596

5. (a) 900 litres, (b) 200 weeks, (¢) 400 weeks 6. (a) 23.8 million, (b) 7 + 1.4n,
(¢)21 7. (a) 100, 80, 64, 51.2, ... (b) 482.4 (¢) 500 8. Rs. 8000
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9. Rs. 9468.22 10. 17 hours 11. 25 days 12. 1088
13. 7.2 seconds 14.410.4mA

EXERCISE 7.1

1. 12 kinds of rolls 2. 12 career paths 3. 1) 5040 ii) 362,880 iii) 90 iv) 1320

v) 36 vi) 10 vii) 25,200 viii) 110,880 1ix) 220 x) 1 xi) 40,320 xii) 1440
|
4 i 8! i) 15! i) 190 vy TI3L gy 100y S0L ) n!
4! 10! 15! 51 6! 5151 51 46! (n—4)!
n!
viii) (n+2)! ix) (n+3)! X)
(n-2)! (n—1)L 5! (n—r+1)!

EXERCISE 7.2
1. 1) 30,240 il) 20 1ii) 5040 iv) 720 2. 1) 9 i) 5 1) 10 4. 30
5. 1) 6,227,020,800 ii) 51,891,840 iii) 1,037,836,800 6. 5040 7. (a) 1440 (b) 35,280

8. 665,280 9. a) 3,628,800 b) 3,386,880 10.a) 6,227,020,800 b) 622, 080 c) 239,500,800
11. 120 12. 30240 13. 1440  14. 2880

EXERCISE 7.3
1. 1) 151,200 if) 479,001,600  iii) 9,979,200  iv) 10810800 2. 1260
3. a) case-I: 5040, case-II: 2520 b) case-I: 720, case-I1: 360  c) case-I: 120, case-1I: 60 4. 2880
5. 180 6. 360 7.12,612,600 8. 725,760 9. 6,227,020,800 ways 10. 967680

11. 2880 12. 3 13. 60

EXERCISE 7.4
1. i) 10 i) 56 iii) 1 iv) 120 2.i) 8 i) 14 i) 15 3. 56 4. 65,780
5. 560 6.171,028,000 7. i) 1176 ii)280 iii)490 iv) 56 8.i)10 ii)20 iii) 54
9. 1176  10.20 11. 13651001  13. (i) 840 (i) 1016 iii) 1008 15. (i) 358,800
1

2730
EXERCISE 8.2

(i) 14,950 16. (i) 86,400 ii)120 17. (i) i) L 18, (i)518,400 ii) 14,400
455

31520 60 96 64
64 8 4 X x* X X"

4 5 6 7

(ii) 128a’ —448a’x + 672a°x" — 560ax’ +280— 84— 414~ T

a a a a
*6d’ 15 15x 6 x°

i) -2+ 22 20+ 2222 1 2. (1)0.91267 (ii) 16.64966416  (iii)

X X X a a a

9920.23968016 (iv) 40.84101 3. (i) 2a* +20a% + 8x* (1) 724
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4. (1) 16 +32x — 8x% —40x> + x* + 20x° — 2x° —4x7 +x% (i) 1 —4x + 10x? — 16x> + 19x* — 16x° + 10x°

4 —15309
—4x7+x* 5. (i) 15120x* (i) — 41184x2 (iii) 4o3zz—5 (iv) 462 X%y 6. (i)
—1)"(2n)! —1 45
(ii) ( 21')(22”) 7. ; 309 s 8. (i) —8064 (ii) " (iii) 35
EXERCISE 8.3

12 14 2 2
L@ 1-—x+=x ——x' . isvalidif [x] <1 (i) 2—>x— 22 o0 s validif

379 81 4" 64 512

4
%x<1:>|x|<§ (ifi) 1 —x +2x2 = 2x* +... is valid if |x] <1 (iv)1+2x+%x2+2x3+...isvalid

1
if |x| < E 2. (1) 9.950 approximate (Correct to three decimal places)  (ii) 1.010 approximate

(Correct to three decimal places)  (iii) 0.331 approximate (Correct to three decimal places)
(iv) 0.935 approximate (Correct to three decimal places)

3. ) (1yx2n  (i)d4n 7. 2

g
EXERCISE 8.4

6. (i) 0.3679 (Approximately) (ii) 0.000045 7. 56 8. Rs. 12,616,000
9. 63 items 10. Rs.2,928200 11. 28 matches 13. 180,160 items

EXERCISE 9.1

1. (i) Quotient=3x+2 ,  Remainder=4  (ii) Quotient = x> + 14x + 25 ,
Remainder =54 (iii) Quotient=x>+x*—2x+1 , Remainder =18
(iv)Quotient = 5x> = 3x— 18 , Remainder =12x+71  (v) Quotient = 3x> + 4x —
3 , Remainder=-25x+9 2. (i) 20 (i1)) 10 (ii))5 (iv)91 (v) 10
3. (i) x+ lisafactor of x> — 1 (ii) x—2 is a factor of x> — 5x + 6
(iii)x + 1 is not a factor of x* + x> + x — 3 (iv)x — 2 is a factor of x* + x> — 7x + 2
(iv)x — 3 is not a factor of x* = 3x> + x> —x + 1
4. () (—2)(x—1)(x+3) (i) (r + 4)(x—6)(x +2)
(i) (x — 2)(x + 3)(x + 1) (2x + 3)
5. Quotient=x>-3x?> —x+ 1, Remainder =1 6. p=2,q=—1 7. k=18. k=8
9. p="2q==" 10.a=-8,b=-16
Exercise 9.2

1. 26.25% 2. x=-lisavalidpoint 3. x=2 lieson the curve
4. x+ 1 1isnot a factor of p(x) 5. CRC=20 6. (i) Remainder =1
(il) System response in not zero whenx=1 7. 45
8. System response in not zero when 7 =4 9. Received message is not error-free, because remainder
is non-zero. 10. Code word is not valid, because x — 1is not a factor of C(x).
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10.

14.

EXERCISE 10.1
A3 . B L
i) D) i)—1 i) 2 iv) 2 V) \/3 vi) 7 2.1) —cos 12°ii) —sin 12°  iii) cos 27°
iv) tan 33° v) sin 15° vi) —sin 39° vii) —cot 33° wviii) —sin21°  ix)—sin 30°
Exercise 10.2

A1 A3l Bl \3+1 1-3 143
1) 2\/5 ii) 2\/5 iii) \/§+1 iv) 2\/5 V) 2\/5 Vl)l_\/g

56 .. 33 56 . 16 63 16

1) ~65 i) ~65 1ii) 33 iv) 65 V) 65 vi) 63

The terminal arms of angles of measure and ¢ + £ and o — £ are in I1I and I quadrants
respectively.

. 33 56 .. 416 3 . . 5 e 4
1) 65° 65 11)4—25,§ 14. 1) 13sm(a+¢),tan¢=§ 11)551n(¢9+(/)),tan(p=§

\/Esin(6+¢),tan¢:—l iv) \/41 sin (0+¢), tang = —% v) J2sin(0+@), tan
9 =1 vi) \/3_45in(6+¢),tan¢=_?5

EXERCISE 10.3

Lo 120 19 o oo 24 _ 1 _ 24
1)sm2a—169,0052a——169,tan2a——119 11)sm2a—25,cos2a—25,tan2a—— 7

— 4 cos 20+ cos 4 -1
in* 9= S—4€08 86 cosd8 5. 4 sin18°=l%=cos 72° i) sin 54° =

5+1 10 +24/5 10 — 24/5
L = cos 36° iii) cos 18° = m = sin 72° iv) cos 54° = ﬂ = sin 36°

4 4 4

EXERCISE 10.4

1
i) sin4@+sin26  ii) sin 84— sin 26 iii) 5 (sin760+sin36) iv) cos 50— cos 96
1 . . . 1 . 1 o o 1 o
5 (sin 2x — sin 2y) V1)§ (cos 4x + cos 60°) vii) 5 (cos 34" — cos 58") viii) 5 (cos 90” — cos 2x)
36

90
i) 2sin4fcos @ i) 2cos60sin26 iii)) 2 cos 5 cos iv)  —2sin46sin 36

v) 2 cos 30° cos 18° vi) 2 sinx cos 30°
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1.

2.

1.

Exercise 11.1
(i) even  (ii) neither even nor odd (iii) even (iv) neither even norodd  (v) odd

(vi) odd (vii) even (viii) even 2. (i) 27” (i) 27” (iif) % i) 2r ) 22 (vi) 57 (vii)
T
47” (viii)% (ix) 30 (%) 47” (xi) 307

Exercise 11.2

s / / / _
S/ / / = '/’ / N

(@) ii) :

NN SSESTE==E / / =
D L WD W A VR ™ | {4

SN A
(@ (i)

Exercise 11.3

. . ) . 3 -1 5 1
(i) Max=4, Min=2 (ii) Max=4, Min=2 (iii) Max:E,Mm:? (iv) MaX:E’MIHZE

(v) Max=4, Min=2 (vi) Max=3, Min=—1 (vii) Max—é,Min— é (viii) Max—i,

1

Min=— (ix) Max=—, Min= g 2. (a) maximum temperature= 21.5", minimum
temperature=8.5" (b) Temperature at 9 AM =8.89" 3. distance=36.78m 4. height=30.92m

5. (a) h(t)=—30cos[f—0t]+36 (b) 66 feet (c) 63.72fcet 6. (a) 2.7m (b) 0.3m

(c) %second (d) 0.05second 7. (a) h(t)=28—20c0s(6”—0tj (b) 28 feet

() 37.87sand 82.13s 8. (a) 69.66 F (b) 6hr (c) 727F 9. (a) 65000
(b) 80000
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EXERCISE 12.1
1. (i) 2 (i) 0 (iii) %(iv) % 2 (i) 10 (i) 5 (i) 4 (Gv)0 (v) 0 (vi) %
L@ 2 (4 i 12 W) 0 1 1 . R I O
. () (i1) (iii) s (iv) ) 5 (vi) (vii) ) (viii) N
(ix) Lo 4, G 5 () = (i) 0 (v) 1 ) = (vi)l (vi)) 2 ()0
m 180 b
x) 1 (xi) % (xii) —% 5. (1) € (i) e (iii) é (iv) e (v) & (vi) e
(vii) e (viii) eLz (ix) é (x) -1 (xi) 1

EXERCISE 12.2

1. (1) -2 (i) 0 (i) 0 2. (i) fis discontinuous at x = 2 (ii) fis discontinuous at x = 1
3. (i) fis discontinuous at x =2 (ii)  f'is discontinuous atx=-2 4. c=-1

1
5. G) m=1,n=3 (i1) m=4 6. k= g 7. Ax) is discontinuous at x = 1

EXERCISE 12.3
1. 0 2. 100,00010 3. 500 4. (i) 10 Gi) 0 5. (i) oo (i) 82.44
6. yes 7. (i) 16.18% (i) 13499 8. yes

12 1 1
3.0 2 (4 i) T W0 W —% i)l (vii) oa i o

(x) Za™ 4. () 5 (i) = G0 (V)1 v) — (vi)l (vii) 2 (00
m 180 b
EXERCISE 12.4

1. 10% 2. 15% 3. 8% 4. 1400 S. 18000 6. Year 1=4800,year 2= 3600
7. depreciable cost =90000 , year 2 =24000 8. 2250 9. 2667 10. 67500
11. Year 1 =32000, Year 2 =22400

EXERCISE 13.1

-1 1 - 1 1
Lo @dx () o= (iD-52 " (M2-3 2 () 50~ F

3. (i)% (i) 2x +2 4. (i)ﬁ (i) 10Qx+3)* (i) 7a(ax + b)°

1
5.8,y=8x+13 6. -5, y=-5x-87.1,y=-5x-8 8. 8 9.6,6y=x+9
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10. (a) 28km/h (b) —km/h 11. 2fi/sec12. 8°c/hr 13. (i) not differentiable (ii) not
differentiable

EXERCISE 13.2

1. (i) 4x3 + 6x2 + 2x (i1) 3( + ;2) (iii) (2%1)2 (iv) % V) 1=2x3+x732
X

(2 + D2 -3 -8 2
(vi) 8 — 2x (vﬁ)%xl’;z—) (viD) 7 _x3)2 (ix) (xx: i

3x%—2x¥?—3x+2 X =3x2+3x-1

—a . —2x
O ar@ro? Vi@ akaho 1y 3 (P 2y

EXERCISE 13.3

4.v=152-6t+1 5. Max. stress = 100, Rate of change =0

6. (a) P(x) =-10x%+ 700x — 2000 (b) Rs. 400 (c¢) 35 units

8. (a) 2940 (b) 27440 (c) astime increases rate increases

11. (a) 152m/s (b) 96m/s* (c) t=0.47 secandt=1.13 sec 12. (a) 72km/h (b) —12km/h*
(c)2.5hrs  13. (a) 292Pa/m (b)x=11.55m (c) increasing 14. (a)r=1.44m

(b) Rs. 156250.57 (c) 191686.6 units/m
EXERCISE 14.1
1. @) —9j (ii) 13i—2j—22k (iii) \[273

-3 1+4+/17
2(1)7,7 7 7(11)6,3 3 3(111)10,5,5,03 D
1 4. 17i-12j-16k | 0
4-“_l+‘z—§lc 5. ——— 6.(3i) NEN _,~+—0 !_—5 k
9- 9 9 689 \26 7 267 26
7 7 7
(i) ~ T_z+—1+—1c 7. x=-3,y=-5
3- 437 3
2. 4. 4 2. 4. 4 —5i+10j 15k
(2) 31—31+31cand—31+31—31c (b)-3 () =
5
) a——— b=75 10.10n/179 kilometers 11.(i) — 7 7 7( )3\/3_ 3\/_ 33£

12. Only the trlple (iii) 45°, 60°, 60° satisfies the condition for direction angles
of a single vector.
EXERCISE 14.2

L \14 9 o=l Y
1.(i) 7 (ii) 270 (iii) 558 (iv) \/6
. . 8 . 16 . 32 .
2.(i) Projection of g along b: — 51 it/ k ; Projection of b along a: —~

<[5

4
itk

~loco
l~.
|
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5. 5.5 o 20 0 10 . 15
(ii) Projection of g along b: —_i+51+§ k ; Projection of b along a: 2—9_i—2—91+2—9k

3
3.)3 (i) lor— 5 4.2 or-3 5. zero vector

6.(ii) The points P(4, -1, 2), O(1, 3, —1), R(-2, 4, 6) do not form a right triangle.
99R/26

9.56 Nm 10.32 Nm 12. 13

Nm
EXERCISE 14.3

LA)axb=-3j-3k; bxa=3j+3k ()axb=5i+3j-Tk ;bxa=-5i-3j+7k
sbxa=Ti+7] (ivyaxb=3i-6k ;bxa=-3i+6k

2.(i)w; sin O :\/673 (ii) LSy 5ZC; sin© :@ (iii)ﬂ; sin :AQ
643 \J644 \[78 \87° 7 2 3
(iv) w ;sin@ =- 64 3.(3i) 3\/2_6 square units (ii) 32 square units
654 ’ \735 2 2
4(i) 5\/5 square units (ii) \/237 square units (iii) 1/ 190 square units
21 12

5. a= 3 b= 3 6.(i) Parallel vectors: u and w ; Perpendicular vectors: No

(ii) Parallel vectors: u and w ; Perpendicular vectors: u and v ; v and w
11. Conclusion: At least one of the vectors g or b is the zero vector.
13. 48i—4+30k 14. -14j-14k 15. 3i+3j+3k16.15i—-15/-15k

EXERCISE 14.4

5
1.(i) 25 cubic units (ii) 14 cubic units (iii) 10 cubic units 4.(i) 5 (ii) 1

6.(a)@4 ()3 (i)l (v)0 7.(i)§cubic units (ii)%cubic units

301 .
10. 725 11,150, = 100 & (in pound feet) 12. /41 meters

13. Rs. 532500, which is the total revenue from the sales of all items.

14.-20 i + 110 + 50 k Nm 15.(a) [500, 300, 200], [500, 400, 2000] (b) Rs. 770000



Glossary

Complex Numbers: The numbers of the form Z=a-+ ib where a,be //R and [ = \/—_l , are called
complex numbers.

Conjugate Complex Numbers: Let Z=a + ibvea complex number, then a —ib is called the complex conjugate
of a + ib. Complex polynomial: Complex polynomial P(z) is a polynomial function of the complex variable z with
complex coefficients. It is expressed in the general form as: P(Z) = anz" +a,,z LR az+a,.

Zeros of the function: If P(z) is a polynomial function, the values of z that satisfy P(z) = 0 are called the zeros (or
roots) of the function.

Imaginary cube roots of unity: The numbers containing i are called Complex numbers. So

1+ 1B
—and are
2 2

called complex or imaginary cube roots of unity.
Elements of the matrix: The numbers used in rows or columns are said to be the entries or elements of the matrix.

Order of matrix: A bracketed rectangular array of mxn elements d,; (i=123,..,m; j=12,3,..,n),

arranged in m rows and » columns is called an m by » matrix (written as 777 X 7 matrix), where 71X 7 is called
the order of the matrix.

Row Matrix or Row vector: A matrix, which has only one row, i.e., 1xn matrix of the form

[aﬂ a, dg .. am] is said to be a row matrix or a row vector.

Rectangular Matrix: If 72 # 71, then the matrix is called a rectangular matrix of order 772 X 71 , that is, the matrix
in which the number of rows is not equal to the number of columns, is said to be a rectangular matrix.

Square Matrix: If m = n, then the matrix of order 72X 7 is said to be a square matrix of order » or m. i.e., the
matrix which has the same number of rows and columns is called a square matrix.

Null Matrix or Zero Matrix: A square or rectangular matrix whose each element is zero, is called a null or zero
matrix.

Transpose of a Matrix: If 4 is a matrix of order 72X 7 then an 72X 71 matrix obtained by interchanging the
rows and columns of 4, is called the transpose of 4. It is denoted by 4"

Inverse of a Square Matrix of Order n > 3: Let 4 be a non-singular square matrix of order ». If there exists matrix
Bsuchthat AB=BA=1 ,,» then B is called the multiplicative inverse of 4 and is denoted by A_1 .

Partial Fraction: Expressing a rational function as a sum of partial fractions is called Partial Fraction.

P
Rational Fraction: The quotient of two polynomials ﬁ where Q(x) # 0, with no common factors, is called a

Rational Fraction.

P

Proper Rational Fraction: A rational function 00 is called a Proper Rational Fraction if the degree of the

polynomial P(x) in the numerator is less than the degree of the polynomial Q(x) in the denominator.

P
Improper Rational Fraction: A rational fraction é(% is called an Improper Rational Fraction if the degree of the

polynomial P(x) in the numerator is equal to or greater than the degree of the polynomial Q(x) in the denominator.

Irreducible Factor: A quadratic factor is irreducible if it cannot be written as the product of two linear factors with
real coefficients. For example, x>+ x + 1 and x>+ 3 are irreducible quadratic factors.
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Fundamental Law of Trigonometry: Let @ and b be any two angles (real numbers), then
cos(a — ) = cosa cos ff + sina sin f which is called the Fundamental Law of Trigonometry.

Allied Angles: The angles associated with basic angles of measure 8 to a right angle or its multiple are called Allied
Angles.

Function: A function is a rule or correspondence, relating two sets in such a way that each element in the
first set corresponds to one and only one element in the second set.

Domain: A function ffrom a set X to a set Y is a rule or a correspondence that assigns to each element x in X
a unique element y in Y. The set X is called the domain of 1.

Range: The set of corresponding elements y in Y is called the range of f.

Even Function: A function [ is said to be an even if /'(—x) = f(X), for every number x in the domain of f .

0Odd Function: A function f is said to be an odd if f'(—x)=—f(x), for every number x in the domain of f .

Vector: A vector is a quantity that has both magnitude and direction for examples displacement, velocity,
acceleration, weight, force, momentum, electric and magnetic fields, etc.

Scalar: A scalar is a quantity that has only magnitude or size, such as mass, time, density, temperature, length,
volume, speed work etc.

Unit Vector: A unit vector is defined as a vector whose magnitude is unity.

Orthogonality of Two Vectors: Two non-zero vectors u and v are perpendicular if and only if u x y = 0.
Hypothesis: A hypothesis is an educated guess or proposed explanation for a statement based on limited evidence.
Induction of Hypothesis: It refers to the process of formulating a general statement or hypothesis based on specific
examples or patterns observed in particular cases.

Binomial Expression: An algebraic expression consisting of two terms such as a + x, x — 2y, ax + b etc., is called a
binomial or a binomial expression.

Factorial: Factorial is a mathematical operation that multiply a number by every positive integer below it till 1.
Permutation: A permutation of » different objects taken 7(< n) at a time is an arrangement of the » objects.
Circular Permutation: In circular permutation, there are  (n — 1)! ways for n distinct things or objects because
in circular order, arrangements of things / objects can be rotated (n — 1)! times.

Limit of a Function: Let a function f(x) be defined in an open interval near the number “a” (need not to be at “a”.

If, as x approaches “a” from both left and right sides of “a”, f(x) approaches a specific number “L”. Then “L” is
called the limit of f(x) as x approaches to a.

Divergent Sequences: A sequence is divergent if it does not approach a finite value.

Monotonic Sequences: A sequence is monotonic if it is either entirely non-increasing or non-decreasing. Monotonic
sequences often converge, but not always.

Bounded Sequences: A sequence is bounded if there exists some real number M such that |an| < M| for all n. A
bounded sequence may or may not converge.

Arithmetic progression (A.P): An arithmetic progression is a sequence in which each term after the first is found
by adding a constant to the previous term. This constant is called common difference of the arithmetic progression
and is usually denoted by‘d’.

Series: The sum of the terms of a sequence is called the series of the corresponding sequence.

Geometric Progression (G.P): A geometric progression or geometric sequence is a sequence in which each term
after the first is found by multiplying the previous term by a nonzero constant » called common ratio.

Arithmetic geometric sequence (A.G.S): A sequence which is formed by multiplying the corresponding terms of
an A.P. and a G.P. is called arithmetic-geometric sequence.

Quadratic function: A quadratic function is a polynomial function of degree two. It is typically expressed in the

standard form: f(x) = ax®> + bx + ¢, where a, b and c are real numbers, and a # 0.

Polynomial function: A polynomial in X is an expression of  the form
-1 ) 2 . .

anx" + anflx" +a, an +t...tax +ax+a, a, * 0 , where n is a non-negative integer and

the coefficients a,,a,_,,a, ,,...,a, and @, are real numbers.
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